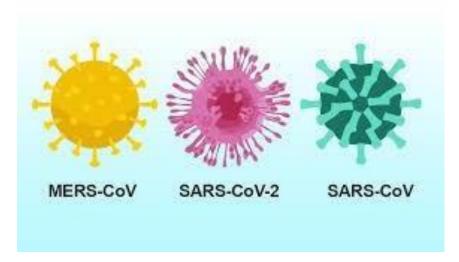

# **COVID-19**: aspetti clinici, terapeutici, e epidemiologici. Long COVID

Francesco Di Gennaro

#### **The Learning Pyramid**



Adapted from the NTL Institute of Applied Behavioral Science Learning Pyramid


#### Cosa Sappiamo e cosa non sappiamo

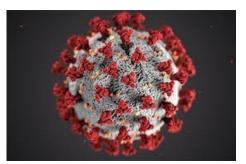

| Virus.a RNA,              |  |
|---------------------------|--|
| Grande                    |  |
| Ubiquitario               |  |
| Recettore ACE 2,          |  |
| Effetto citopatico ? (NO) |  |
| SARS CoV1 , MERS.         |  |
| Long COVID (?)            |  |

#### La famiglia CORONAVIRUS

- Virus con capsula a RNA a singolo filamento
- Clinicamente
  - virus respiratori noti dai primi anni '30
  - Spettro clinico dal raffreddore comune alle gravi infezioni delle basse vie respiratorie spec. in lattanti, anziani, immunodepressi
- Già noti in passato:
  - SARS-CoV, 2003 focolaio di sindrome respiratoria acuta grave iniziato in Cina nel 2002, letalità 10%
  - MERS-CoV, 2012 = sindrome respiratoria del Medio

Oriente (Arabia Saudita, Quatar... letalità 34%)



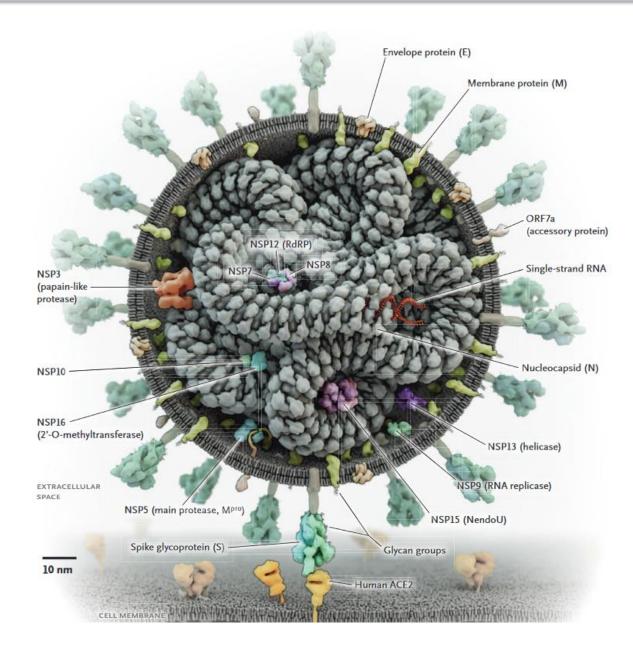



## SARS-CoV2 e COVID-19

- Dicembre 2019 nuovo coronavirus causa di un cluster di casi di polmonite a Wuhan, nella provincia cinese di Hubei.
- 11 Marzo 2020, WHO ha dichiarato Pandemia
- Verosimilmente di origine zoonotica. Trasmissione predominante uomo–uomo
- La *malattia* è designata come **COVID-19:** (COrona Virus Disease)-19
- II <u>virus</u> che causa COVID-19 è designato come sindrome respiratoria acuta grave- da CoronaVirus- 2 (SARS-CoV-2: Severe Acute Respiratory Syndrome – COronaVirus – 2)

Infezione da SARS-CoV2 è condizione estremamente complessa

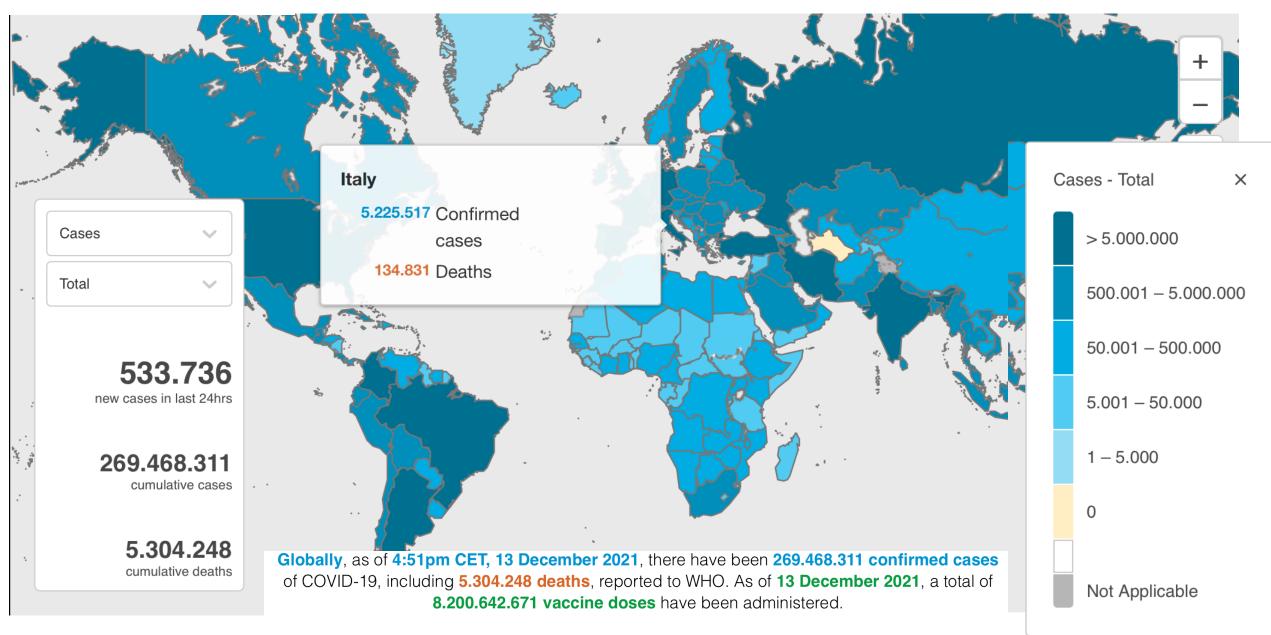
- per i meccanismi fisiopatogenetici connessi
- per la molteplicità delle manifestazioni cliniche
- per il ruolo giocato dalla risposta immunitaria dei soggetti




Struttura del virus SARS-CoV2

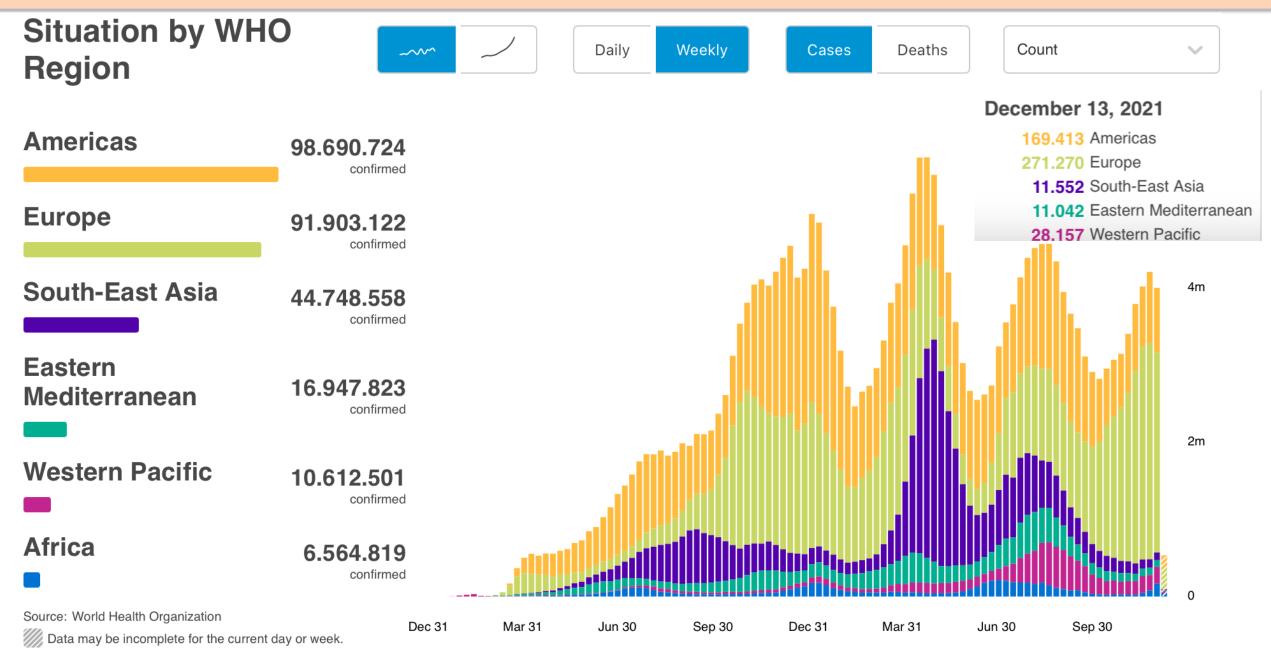


La provincia di Wuhan

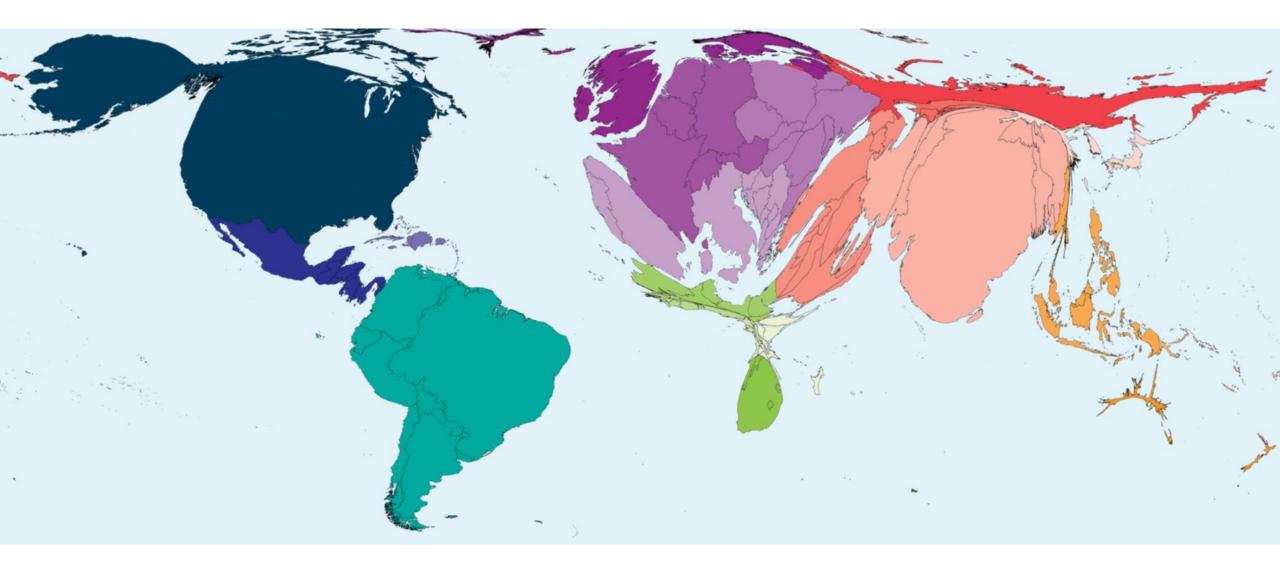

### **SARS-CoV-2 STRUTTURA E CICLO VITALE**



- Singolo filamento di RNA a polarità positiva (28-32 Kb), RNA polimerasi RNA-dipendente
- Proteina S (*Spike*) lega il recettore sulla cellula ospite (ACE 2 identificato come recettore)
- Iniziale traduzione poliproteina non strutturale che forma il complesso di replicazione-trascrizione
- 4 proteine strutturali (*Spike*, di membrana, *envelope* e nucleocapside)
- S (Spike, permette al virus di attaccarsi alle membrane della cellula ospite), E (Involucro), M (Membrana), tutte e tre creano il CAPSIDE
- N (Nucleocapside), contiene il genoma




#### WHO Coronavirus (COVID-19) Dashboard






### **Situation by WHO Region**

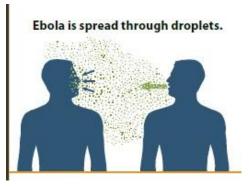


### **COVID 19 Global distribution**

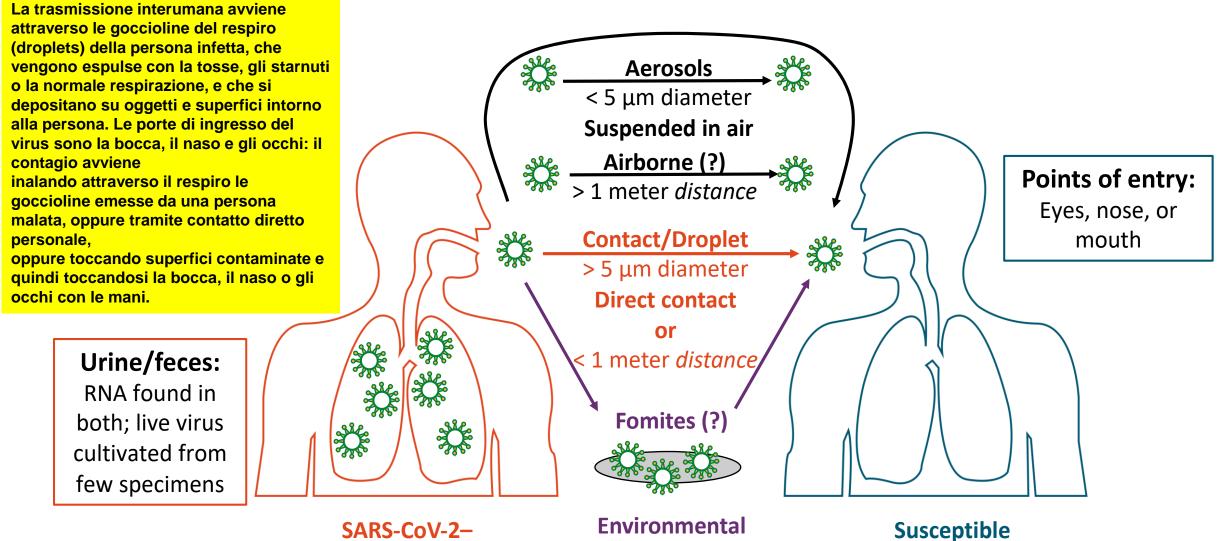


### Modalità di trasmissione del virus

#### COVID-19 si trasmette per droplets/ per contatto con superfici contaminate


• attraverso la saliva, tossendo e starnutendo

Germs like chickpox and TB are


spread through the air.

• contatti diretti personali, attraverso le mani, ad esempio toccando con le mani contaminate non ancora lavate bocca, naso o occhi

| Diffusione per via aerea                                                                            | Trasmissione attraverso droplets                                                                              |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Germe fluttua nell'aria dopo che<br>una persona parla, tossisce,<br>starnutisce                     | Goccioline respiratorie che si<br>emettono starnutendo, tossendo<br>o parlando, dette goccioline di<br>Flügge |
| NON è necessario il contatto<br>diretto con la persona infetta<br>perché qualcun altro si<br>ammali |                                                                                                               |
| Tubercolosi, Morbillo, Varicella                                                                    | Ebola                                                                                                         |



### Modalità di trasmissione del virus

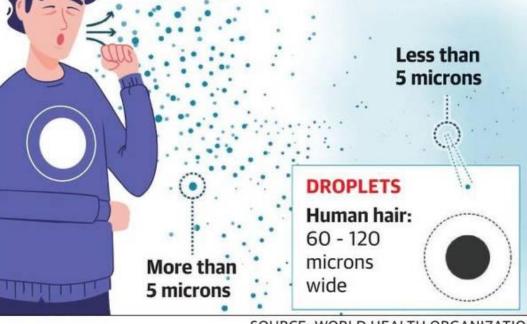


Infected Host

Stability

Susceptible

### **Trasmission airborne**


### **Key difference in transmission**

#### DROPLET

Coughs and sneezes can spread droplets of saliva and mucus

#### AIRBORNE

Tiny particles, possibly produced by talking, are suspended in the air for longer and travel further

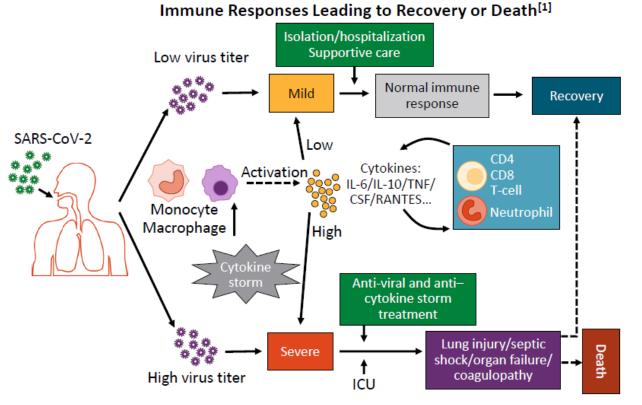


SOURCE: WORLD HEALTH ORGANIZATION

Recentemente l'OMS ha pubblicato un documento nel quale sottolinea come la **trasmissione airborne** non possa essere esclusa in ambienti affollati e inadeguatamente ventilati in cui sono presenti persone infette, come chiese, ristoranti e locali notturni in cui le persone gridano, parlano o cantano.

La possibilità di trasmissione del virus tramite aerosol è supportata da un numero sempre maggiore di evidenze scientifiche. Gli US Centers for Disease Control and Prevention (CDC), nelle loro linee guida recentemente aggiornate, riconoscono che in determinate condizioni le persone con COVID-19 possono infettare altre persone che si **trovano a più di 6 piedi (oltre 180 centimetri) di distanza**, soprattutto se ci si trova all'interno di **spazi chiusi** con ventilazione inadeguata, e la persona infetta respira pesantemente, oppure canta o svolge attività fisica

### Hallmarks of COVID-19 Clinical Picture


**1.Cytokine Storm: Dysregulated and excessive immune responses** may lead to significant systemic damage. Mononuclear cells such as neutrophils and monocytes in the patient's lung tissues and peripheral blood produce elevated levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 and tumor necrosis factors, directly related to the severity and mortality of the disease

2.Hypoxemic Respiratory Failure: Direct cytopathic effects of the virus and virus-induced decrease in surfactant levels causing atelectasis are some of the unique pathologic findings seen in patients with COVID-19. Hypoxemia is the hallmark of the pulmonary derangement of the disease, with no signs of respiratory distress ("silent or happy hypoxemia")

**3.COVID-19-related Hypercoagulability:** A distinct **prothrombotic state** as opposed to a consumptive coagulopathy has been described in COVID-19 patients, secondary to a **markedly increased levels of fibrin and fibrinogen**. This **mechanism is synergistic with the cytokine storm and the virus-induced endothelial dysfunction**. Consequently, **serum levels of D-dimer are a strong prognostic factor of poor outcomes** 

# **1.Cytokine Storm**

#### **Immune Response to SARS-CoV-2**

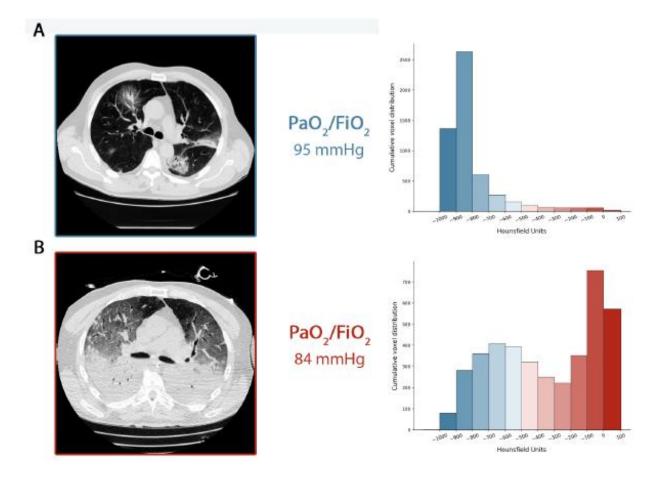


#### Adequate immune responses<sup>[2]</sup>

- Timely innate/adaptive responses
- Quick type 1 IFN response
- Activation of efficient antiviral response (clearance by macrophages)
- Activation of Th1 cells and B-cells for production of neutralizing antibodies

#### Inadequate immune responses<sup>[2]</sup>

- Delayed/limited type 1 IFN
- Endothelial cell death
- Epithelial/endothelial leakage
- Overactivation/exhaustion T-cells and NK cells
- Accumulation of activated macrophages → cytokine


storm

Slide credit: clinicaloptions.com

CO

1. Wang. 2020; J Leukoc Biol. 2020; [Epub]. 2. Sokolowska. EAACI. 2020[Epub].

# **2.Hypoxiemic Respiratory Failure**



Panel A: CT scan acquired during spontaneous breathing. The cumulative distribution of the CT number is shifted to the left (well aerated compartments), being the 0 to -100 HU compartment, the nonaerated tissue virtually 0. Indeed, the total lung tissue weight was 1108 g, 7.8% of which was not aerated and the gas volume was 4228 ml. Patient receiving oxygen with Venturi mask, inspired oxygen fraction of 0.8. (TYPE L)

Panel B: CT acquired during mechanical ventilation at endexpiratory pressure at 5 cmH2O of PEEP. The cumulative distribution of the CT scan is shifted to the right (non-aerated compartments) while the left compartments are greatly reduced. Indeed, the total lung tissue weight was 2744 g, **54% of which was not aerated** and the gas volume was 1360 ml. The patient was ventilated in Volume Controlled mode, 7.8 ml/kg of tidal volume, respiratory rate of 20 breaths per minute, **inspired oxygen fraction of 0.7**. (**TYPE H**)

# **2.Hypoxiemic Respiratory Failure**

#### EDITORIAL

#### **Open Access**

Check for updates

# COVID-19: a hypothesis regarding the ventilation-perfusion mismatch

Mario G. Santamarina<sup>1,2</sup>, Dominique Boisier<sup>3</sup>, Roberto Contreras<sup>4</sup>, Martiniano Baque<sup>5</sup>, Mariano Volpacchio<sup>6</sup> and Ignacio Beddings<sup>7\*</sup><sup>5</sup>

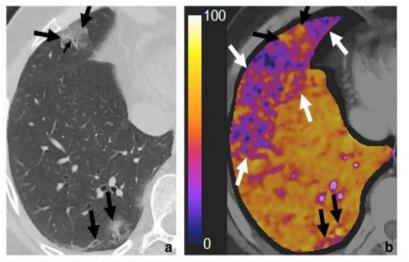



Fig. 1 a, b Slight hypoperfusion in the well-aerated lung, hyperemia, and small zones of hypoperfusion in the areas of injured lung. Fifty-nineyear-old male patient, RT-PCR-confirmed COVID-19, 11 days since symptom onset, without hypoxemia, (PaO<sub>2</sub>/FiO<sub>2</sub>) 538, o-dimer 340 ng/mL. There are isolated foci of ground-glass opacities associated with septal thickening, with a predominantly subpleural distribution, which correlate with areas of hypoperfusion in the middle lobe) and small zones of hypoperfusion (lower right lobe) in subtraction CT iodine maps (large black arrows). There is an evident area of hypoperfusion in the middle lobe and lower right lobe (white arrows) that correlates with the apparently normal lung parenchyma in conventional chest CT images. The conventional CT image also shows pulmonary arterial vascular dilatation in the periphery of the ground-glass opacity in the middle lobe (small black arrow). These slight perfusion abnormalities do not impact the PaFi ratio. The groundglass opacity in the lower right lobe shows slight peripheral hypoperfusion, probably due to compensatory vasoconstriction, an expected regulatory mechanism when vasoplegia is not fully established We believe that a severe V/Q mismatch underlies the pathophysiology of moderate to severe COVID-19 cases, in which downregulation of ACE2 secondary to viral endocytosis plays a key role.

Il rapporto **ventilazione/perfusione** (V/Q) rappresenta il principale determinante della concentrazione di ossigeno nel sangue che esce dalla circolazione **polmonare** per raggiungere i tessuti attraverso il circolo sistemico.

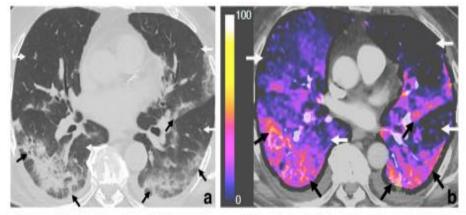
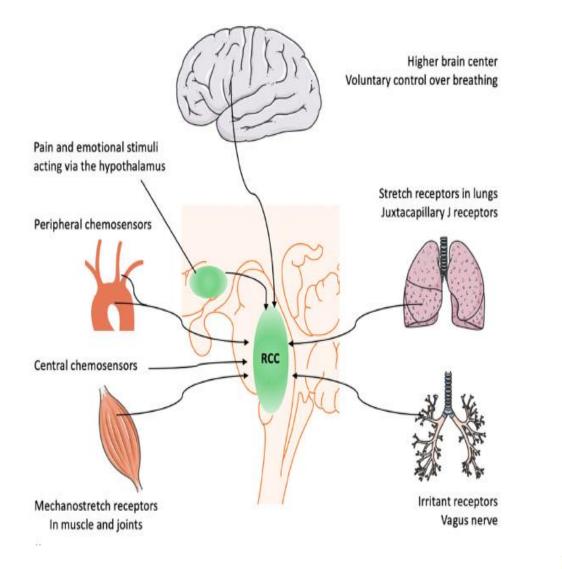




Fig. 2 a, b Prominent hypoperfusion in the well-aerated lung and hyperperfusion in areas of injured lung. Seventy-eight-year-old male patient, RT-PCR-confirmed COVID-19, 10 days since symptom onset, with hypoxemia, (PaO<sub>2</sub>/FiO<sub>2</sub>) 206, D-dimer 1600 ng/mL progressively increasing. There are extensive foci of consolidation and ground-glass opacities, associated with septal thickening, with a predominantly posterior and subpleural bilateral distribution, which correlate with the areas of hyperemia and iodine pooling in subtraction CT iodine maps (black arrows). There are areas of markedly decreased perfusion in both lungs, which correlate with the apparently healthy lung parenchyma in conventional chest CT images (white arrows). Bilateral pleural effusion. This could be explained by an increased blockage of ACE2 receptors in the lung endothelium, leading to increased local levels of angiotensin II, which leads to vasoconstriction and ventilation/perfusion mismatch. This patient was managed with invasive mechanical ventilation, with highly compliant lung parenchyma, in accordance with the type 1 or L phenotype described by Gattinoni et al.

# **2.Hypoxiemic Respiratory Failure**



Dhont et al. Respiratory Research (2020) 21:198 https://doi.org/10.1186/s12931-020-01462-5

**Respiratory Research** 

#### REVIEW

### The pathophysiology of 'happy' hypoxemia in COVID-19



Sebastiaan Dhont<sup>1\*</sup><sup>(b)</sup>, Eric Derom<sup>1,2</sup>, Eva Van Braeckel<sup>1,2</sup>, Pieter Depuydt<sup>1,3</sup> and Bart N. Lambrecht<sup>1,2,4</sup>

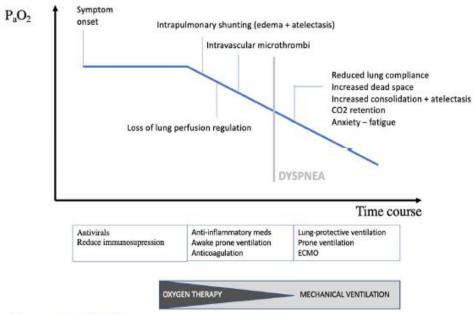
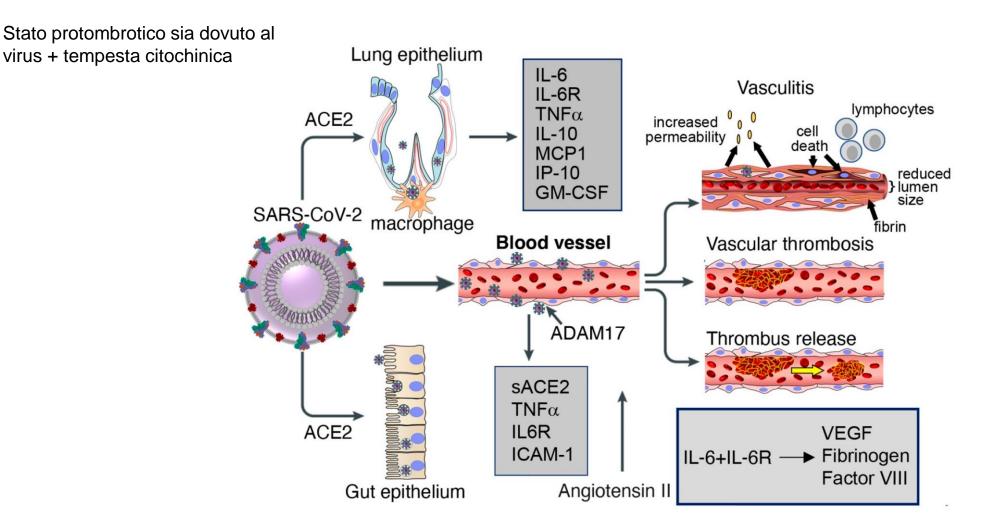




Fig. 2 Mechanisms of hypoxemia in COVID-19

## 3. COVID-19-related Hypercoagulability



### 3. COVID-19-related Hypercoagulability

Check for

Angiogenesis https://doi.org/10.1007/s10456-020-09753-7

**ORIGINAL PAPER** 

#### Microvascular dysfunction in COVID-19: the MYSTIC study

Alexandros Rovas<sup>1</sup> · Irina Osiaevi<sup>1</sup> · Konrad Buscher<sup>1</sup> · Jan Sackarnd<sup>2</sup> · Phil-Robin Tepasse<sup>3</sup> · Manfred Fobker<sup>4</sup> · Joachim Kühn<sup>5</sup> · Stephan Braune<sup>6</sup> · Ulrich Göbel<sup>7</sup> · Gerold Thölking<sup>1,8</sup> · Andreas Gröschel<sup>9</sup> · Hermann Pavenstädt<sup>1</sup> · Hans Vink<sup>10</sup> · Philipp Kümpers<sup>1</sup>



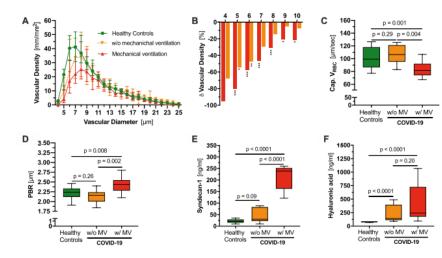



Fig.1 Endothelial glycocalyx dimensions in vivo and in vitro and capillary density in COVID-19 patients with (w/) and without (w/o) mechanical ventilation (MV) and healthy controls.a Median and IQR values of vascular density of healthy controls and COVID-19 patients based on the diameter class from 4 to 25 µm. b Bar charts showing the percentage of loss of vascular density in COVID-19 patients with (red) and without (orange) mechanical ventilation com-

pared to healthy controls (diameter class from 4 to 10  $\mu$ m). \*q < 0.05, \*\*q<0.01, \*\*\*q<0.001 Boxplots of c of capillary V<sub>RBC</sub>, d PBR values, and endothelial glycocalyx constituents e syndecan-1 and f hyaluronic acid of healthy controls (green) and COVID-19 patients with (red) or without (orange) mechanical ventilation (MV) \*p<0.05, \*\*p<0.01, \*\*\*p<0.001

"Our clearly show alterations data severe of the microcirculation and the endothelial glycocalyx in patients with COVID-19. Future therapeutic approaches should consider the importance of systemic vascular involvement in COVID-19"

100

8

Surviv

5

robability

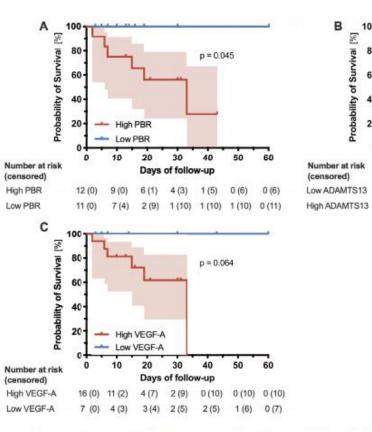



Fig. 3 Survival probability of COVID-19 patients according to different endothelial markers.Kaplan-Meier curves with 95% CIs showing survival probability of COVID-19 patients with a low/high PBR, b

low/high ADAMTS13, and c low/high VEGF-A. #ADAMTS13 of one patient could not be measured due to technical reasons

Low ADAMTS13

10

10(0)

13(0)

9(0)

High ADAMTS13

20

5(4) 3(6) 2(7)

30

Days of follow-up

4(4) 2(6)

p = 0.047

40

0(7)

1 (8)

50

0(7)

0 (9)

60

0(7)

0 (9)

# **Decorso clinico**

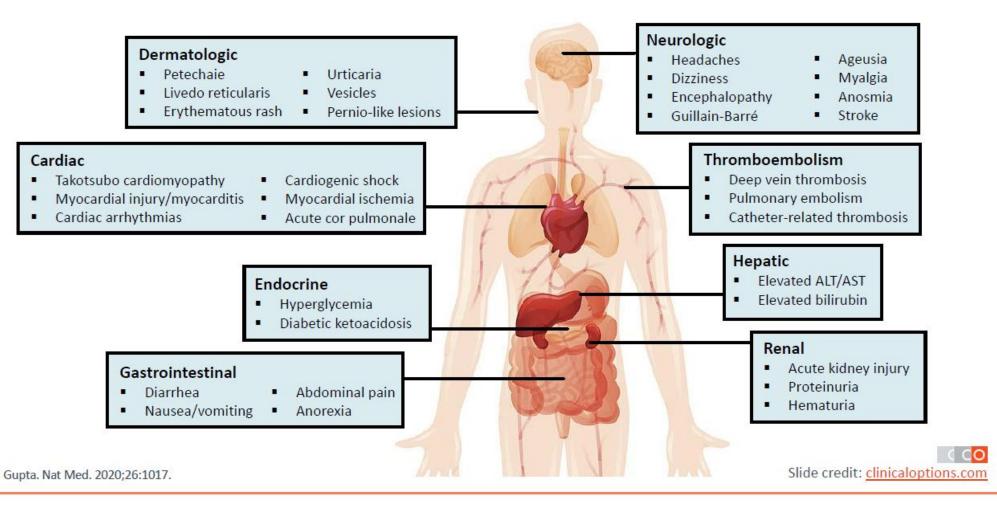
#### **Fase iniziale**

- Legame a ACE2 penetrazione all'interno delle cellule dell'ospite replicazione.
- Fase dei sintomi generali, aspecifici.
- Se sistema immunitario dell'ospite riesce a bloccare l'infezione decorso benigno

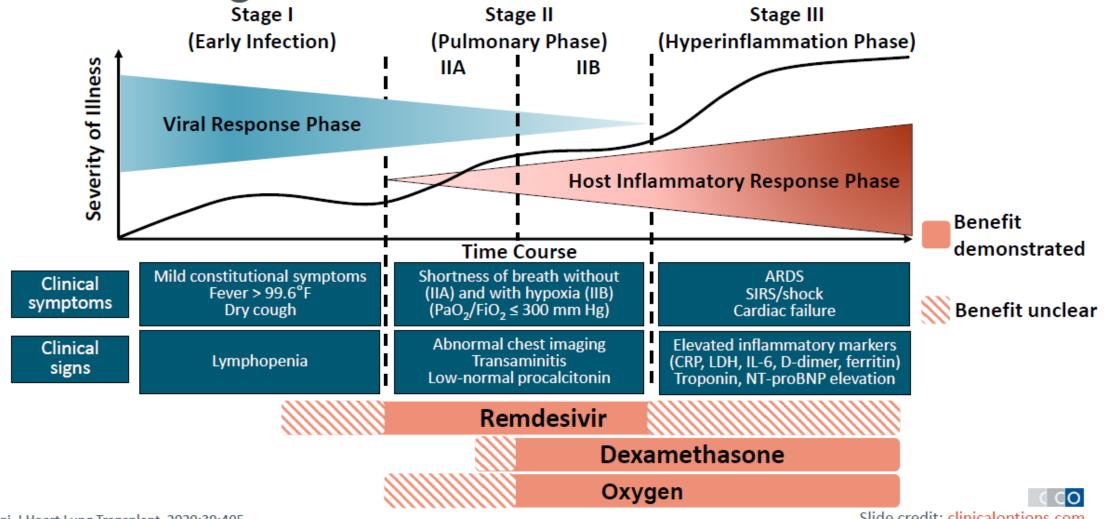
#### Tempesta citochinica

- Possibile evoluzione a quadro clinico ingravescente dominato
   da tempesta citochinica e da stato iperinfiammatorio
- A livello polmonare
  - quadri di vasculopatia arteriosa e venosa con trombizzazione dei piccoli vasi ed evoluzione verso lesioni polmonari gravi e, talvolta, permanenti (fibrosi polmonare).

#### Seconda fase


- Alterazioni morfo funzionali a livello polmonare
- Effetti diretti + risposta immunitaria dell'ospite
- Polmonite interstiziale sintomatologia respiratoria generalmente limitata nella fase precoce
- Possibile evoluzione a progressiva instabilità clinica con insufficienza respiratoria
- "Ipossiemia silente" bassi valori diossigenazione ematica in assenza di sensazione di dispnea soggettiva

#### ARDS


Alterazione progressiva di parametri:

- infiammatori come PCR, ferritina, citochine proinfiammatorie (IL2, IL6, IL7, L10, GSCF, IP10, MCP1, MIP1A e TNFα)
- Parametri coagulativi come aumentati livelli dei prodotti di degradazione della fibrina, il D-dimero, consumo di fattori della coagulazione, trombocitopenia.

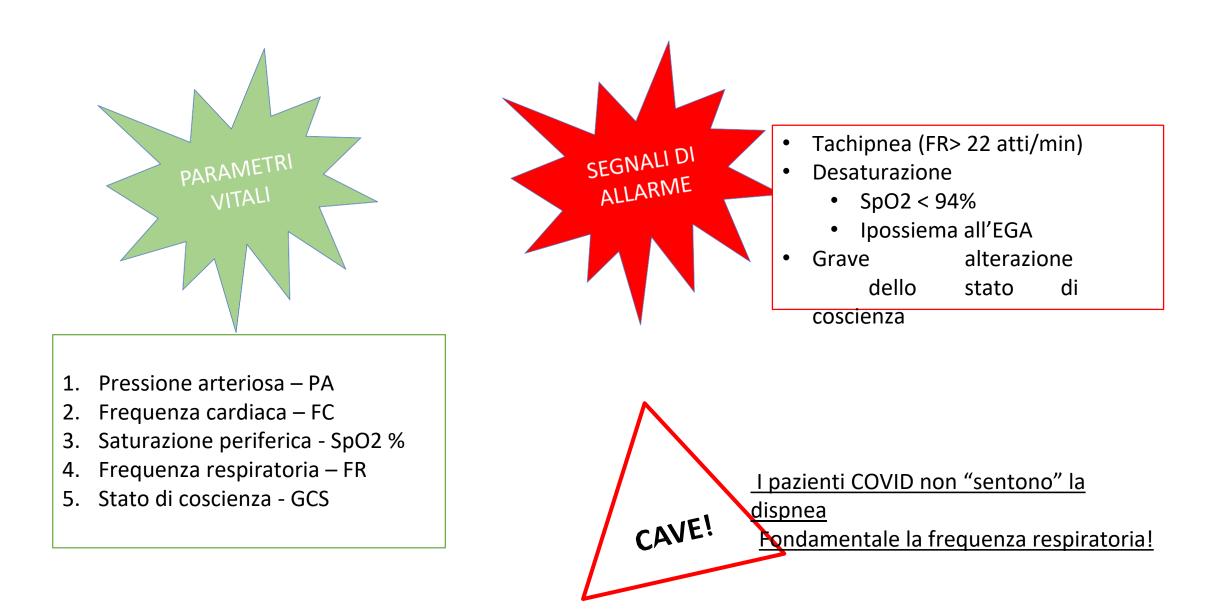
#### **Extrapulmonary Manifestations**



# **COVID-19 Therapies Predicted to Provide Benefit at Different Stages**



Siddiqi. J Heart Lung Transplant. 2020;39:405.


Slide credit: clinicaloptions.com

# **Decorso clinico**

| SINTOMI                                                                                                  | %      |
|----------------------------------------------------------------------------------------------------------|--------|
| <b>Febbre</b> 4-12 gg<br>(Tc > 38°C)                                                                     | 44-94% |
| <b>Tosse</b> 19 gg                                                                                       | 68-93% |
| Anosmia e/o Ageusia                                                                                      | 79%    |
| Sintomi delle alte vie respiratorie<br>(mal di gola, rinorrea, congestione nasale o dei seni paranasali) | 5-61%  |
| Dispnea 13 gg                                                                                            | 11-40% |
| Astenia                                                                                                  | 23-38% |
| Mialgie                                                                                                  | 11-15% |
| Cefalea                                                                                                  | 8-14%  |
| Confusione                                                                                               | 9%     |
| Sintomi GI (nausea, vomito, diarrea)                                                                     | 3-17%  |

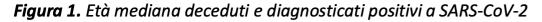
Il 20% dei casi è asintomatico

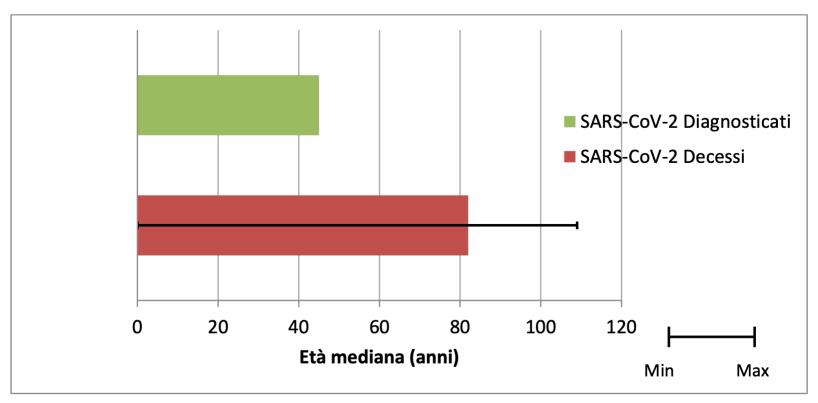
### L'importanza della misurazione dei parametri vitali



# Fattori di rischio (per malattia severa)

- Sesso M
- Età > 60
- Ipertensione arteriosa
- Obesità BMI > 30
- Diabete
- Malattie cardiovascolari, cerebrovascolari
- Malattie degenerative neuro-muscolari
- BPCO
- Insufficienza renale
- Neoplasia maligna attiva
- Latenza tra inizio sintomi e prima valutazione medica


Ospedalizzazione Trasferimento in TI CRITERI DI IOT o ventilazione meccanica SEVERITÁ Mortalità aumentata Predict Hospitalization Risk for COVID-19 Positive Jehl L. JL X. Milnow Cleveland Clinic Department of 0

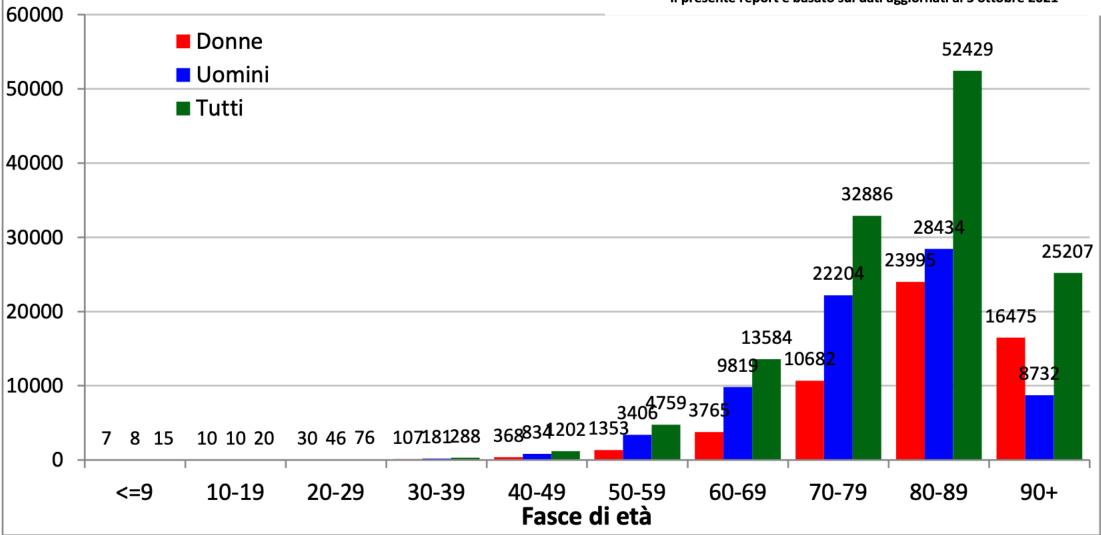

> **Cleveland Clinic**: Studio su ca. 5000 Pz. per stimare il rischio di



#### Report sulle caratteristiche dei pazienti deceduti positivi a SARS-CoV-2 in Italia

Il presente report è basato sui dati aggiornati al 5 ottobre 2021

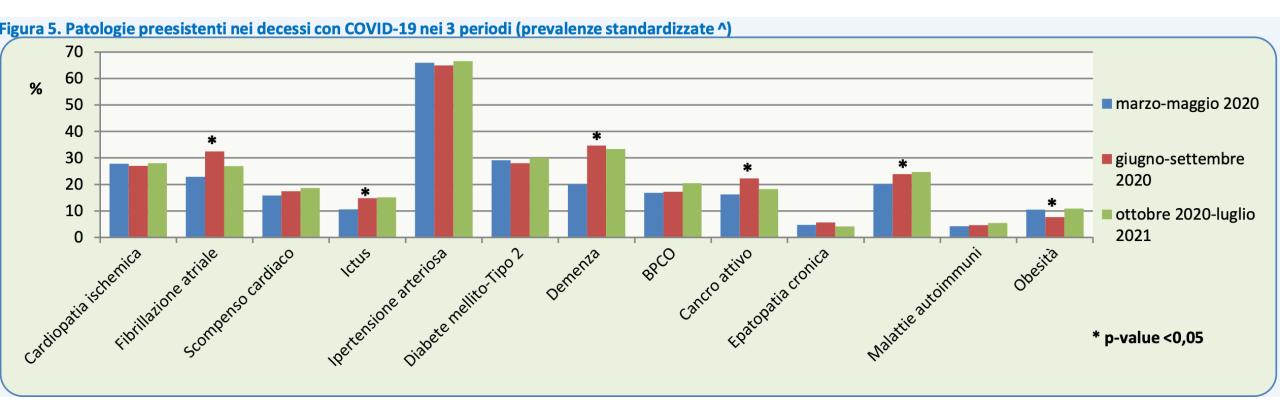







#### Figura 2. Numero di decessi per fascia di età e sesso

Report sulle caratteristiche dei pazienti deceduti positivi a SARS-CoV-2 in Italia


Il presente report è basato sui dati aggiornati al 5 ottobre 2021





Report sulle caratteristiche dei pazienti deceduti positivi a SARS-CoV-2 in Italia

Il presente report è basato sui dati aggiornati al 5 ottobre 2021

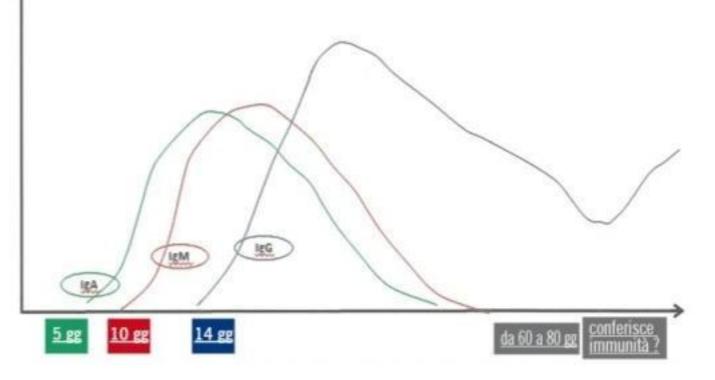


# Diagnosi: test di laboratorio

#### **RT-PCR**

• **Tampone Nasofaringeo** (80% sensibilità 3 giorni dopo l'insorgenza dei sintomi)

• Lavaggio broncoalveolare (BAL): dati ancora non conclusivi, suggeriscono un aumento del 5% nella diagnosi


Antigen test ("rapido")rapido, point of care, possibili falsi negativi

| TEST<br>ANTIGENICO | PROBABILITA' PRE-TEST<br>di infezione da SARS- CoV-2 |                                                     |  |  |  |
|--------------------|------------------------------------------------------|-----------------------------------------------------|--|--|--|
|                    | BASSA *                                              | ALTA °                                              |  |  |  |
|                    | INFEZIONE SARS-CoV-2                                 | INFEZIONE SARS-CoV-2                                |  |  |  |
| NEGATIVO           | ESCLUSA / MOLTO IMPROBABILE                          | INCERTA                                             |  |  |  |
| NEOR INO           | Non indicati test ulteriori                          | Ripetizione test Ag o effettuazione test RT-<br>PCR |  |  |  |
|                    | INFEZIONE SARS-CoV-2                                 | INFEZIONE SARS-CoV-2                                |  |  |  |
|                    | INCERTA                                              | CONFERMATA/ MOLTO PROBABILE                         |  |  |  |
| POSITIVO           | Effettuazione test RT-PCR                            | Non indicati test ulteriori                         |  |  |  |
|                    |                                                      | per motivi clinico-epidemiologici                   |  |  |  |

# Test sierologici

- Prestazioni e precisione variabili
  - IgA: le più precoci
  - IgM: da 5-10 giorni dall'infezione fino a 3 settimane
  - IgG: 14 giorni dopo l'insorgenza dei sintomi; alti titoli in caso di malattia severa

#### COMPARSA E DURATA DEGLI ANTICORPI SPECIFICI (IgA, IgM, IgG)



# Esami di laboratorio di routine

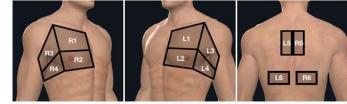
| Leucociti  | < 4000 o > 10000/µL | Lattati    | > 2          |
|------------|---------------------|------------|--------------|
| Linfociti  | < 800/µL            | LDH        | > 250 U/L    |
| Neutrofili | > 8000/µL           | PCR        | > 10 mg/L    |
| PLT        | < 150000/µL         | Creatinina | > 1.5 mg/dL  |
| Troponina  | > 99° percentile    | AST/ALT    | > 40 U/L     |
| D-dimero   | > 1.5 µg/mL         | Ferritina  | > 1000 ng/mL |
|            |                     |            |              |

**Fattori prognostici**: Linfopenia, LDH, PCR, PCT, D-dimero, Ferritina, Troponina, IL-6 **EGA**: pH, P/F, PCo2, Lac

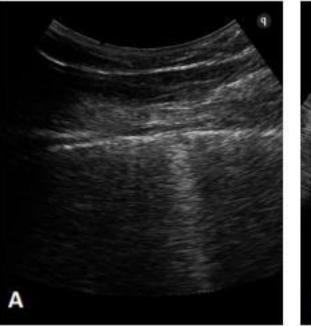
| Stage                                    | Characteristics                                                                                                                                                |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asymptomatic or presymptomatic infection | <ul> <li>Positive test for SARS-CoV-2 but no symptoms</li> </ul>                                                                                               |
| Mild illness                             | <ul> <li>Varied symptoms (eg, fever, cough, sore throat, malaise, headache,<br/>muscle pain) but no shortness of breath, dyspnea, abnormal imaging</li> </ul>  |
| Moderate illness                         | <ul> <li>SpO<sub>2</sub> ≥ 94% and lower respiratory disease evidenced by clinical assessment or imaging</li> </ul>                                            |
| Severe illness                           | <ul> <li>SpO<sub>2</sub> &lt; 94%, PaO<sub>2</sub>/FiO<sub>2</sub> &lt; 300, respiratory rate &gt; 30 breaths/min, or<br/>lung infiltrates &gt; 50%</li> </ul> |
| Critical illness                         | <ul> <li>Respiratory failure, septic shock, and/or multiorgan dysfunction</li> </ul>                                                                           |

### **MEWS: Modified Early Warning Score**

DATI FISIOLOGICI (indicare un solo valore per ogni fattore)


| DATT FISIOLOGICI (Indicare un solo valore per ogni fattore) |      |                   |        |           |                       |                       |                           |
|-------------------------------------------------------------|------|-------------------|--------|-----------|-----------------------|-----------------------|---------------------------|
| Punteggio                                                   | 3    | 2                 | 1      | 0         | 1                     | 2                     | 3                         |
| Frequenza respiratoria (atti/minuto)                        |      | < 9               |        | 9-14      | 15-20                 | 21-29                 | <u>&gt;</u> 30            |
| Frequenza cardiaca (battiti/minuto)                         |      | <u>≤</u> 40       | 41-50  | 51-100    | 101-110               | 111-129               | <u>&gt;</u> 130           |
| Pressione sistolica (mmHg)                                  | < 70 | 71-80             | 81-100 | 101-199   |                       | <u>&gt;</u> 200       |                           |
| Temperatura corporea (°C)                                   |      | <u>&lt;</u> 35 °C |        | 35.1-38.4 |                       | <u>≥</u> 38.4°C       |                           |
| Sintomi neurologici                                         |      |                   |        | Vigile    | Risponde<br>alla voce | Risponde al<br>dolore | Non risponde<br>(GCS < 9) |

PUNTEGGIO TOTALE |\_\_\_| legenda MEWS: 0-2 paziente stabile, 3-4 instabile, > 5critico


| Saturazione O <sub>2</sub>                  | in Aria ambiente | in $O_2$ terapia $ \ $ | Lt/min |
|---------------------------------------------|------------------|------------------------|--------|
| Rapporto PaO <sub>2</sub> /FiO <sub>2</sub> |                  |                        |        |

### **DIAGNOSTICA PER IMMAGINI**

- Ecografia polmonare
  - 12 aree da esaminare





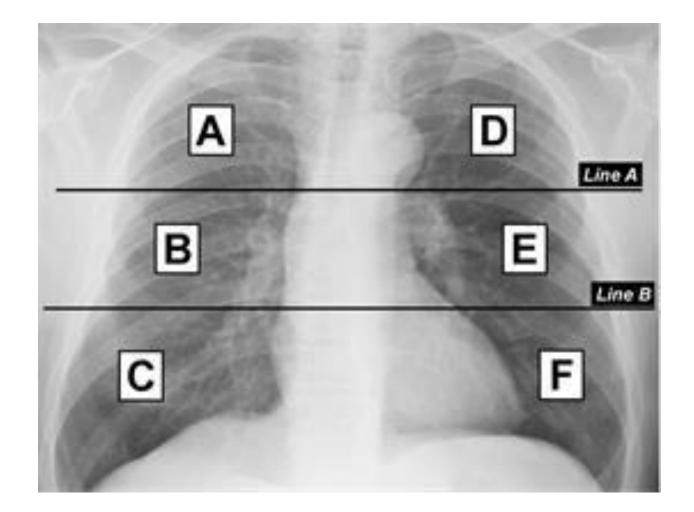


A. Rare linee B, iniziale coinvolgimento interstiziale



B. Coinvolgimento interstiziale

con linee B confluenti e


iniziali addensamenti subpleurici C. Multipli addensamenti subpleurici



## **DIAGNOSTICA PER IMMAGINI**

### RX torace

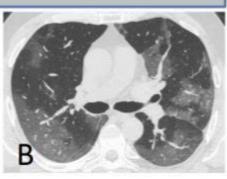
- Valutazione del grado di impegno parenchimale
- BRIXIA score valuta semiquantitativamente il grado di impegno parenchimale in ogni area (con <u>punteggio totale variabile da 0 a</u> <u>18</u>):
  - 0 nessuna alterazione
  - 1 infiltrati interstiziali
  - 2 infiltrati interstiziali e alveolari
  - (predominanza interstiziale)
  - 3 infiltrati interstiziali e alveolari
  - (predominanza alveolare)

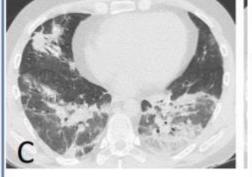


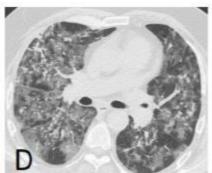
# **DIAGNOSTICA PER IMMAGINI**

**Diagnostica d' immagine:** TC torace con studio ad alta risoluzione: HRTC


### Gold standard


Fase pre-sintomatica (A): piccole aree di iperdensità con aspetto "ground glass", spesso unilaterale, pochi segmenti coinvolti

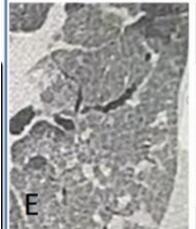

**Prima settimana (B)**: lesioni bilaterali, più estese, più segmenti coinvolti, tipico pattern GG a distribuzione prevalentemente periferica/posteriore. Rari VPL e linfadenopatia


**Peggioramento (C)**: aumento del pattern GG e comparsa di consolidamento parenchimale.

Possibile anche evoluzione a pattern ARDS (D)



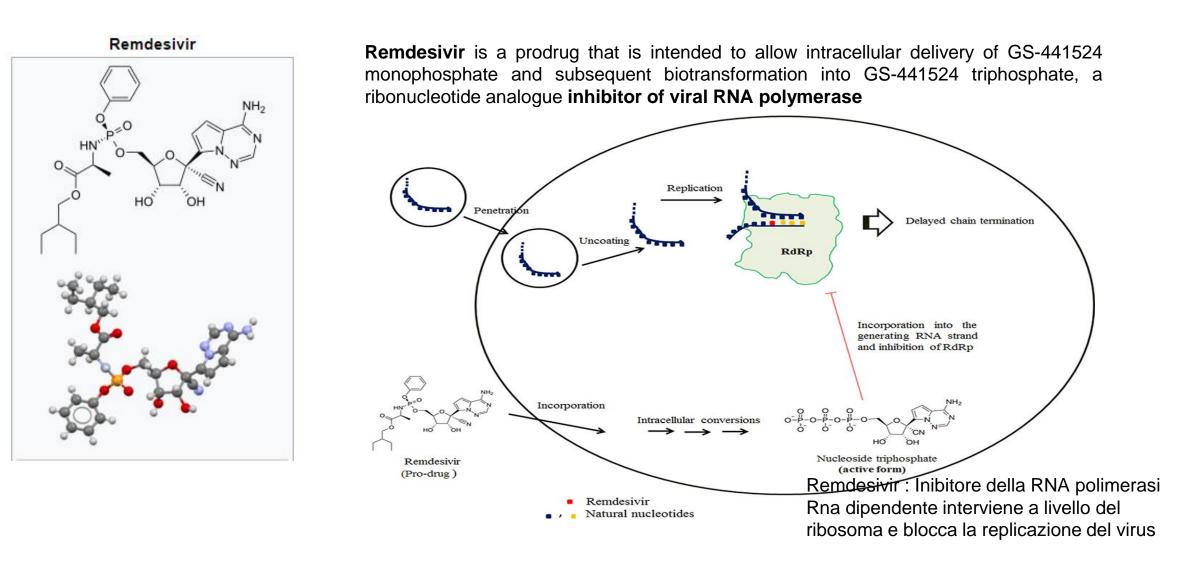




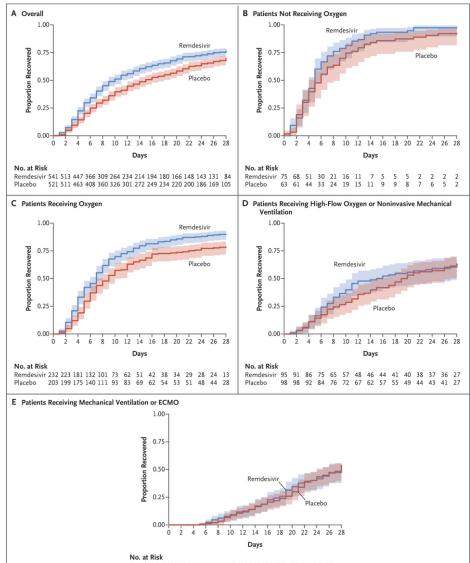



# **DIAGNOSTICA PER IMMAGINI**

**Diagnostica d' immagine:** TC torace con studio ad alta risoluzione: HRTC


**Evoluzione**: casi non severi mostrano riduzione delle aree GG **(E)**. Ispessimento dei setti interlobulari. Nelle aree di consolidamento, sono le porzioni più periferiche che rimangono consolidate più a lungo [] "old spiderweb" **(F)** 

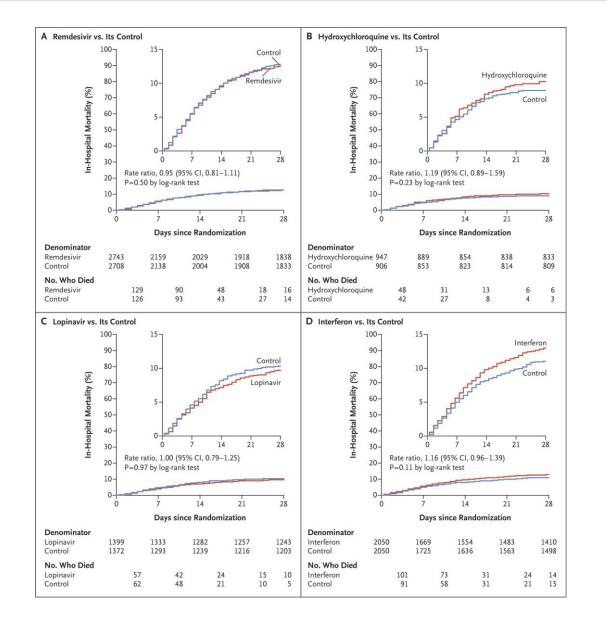







- Antiviral therapy
- Oxygen therapy
- Anti-inflammatory therapy
- Anti-thrombotic therapy
- Antimicrobial therapy
- Plasma/monoclonal antibodies therapy




chain terminator=terminatore di catena



Remdesivir 131 131 129 129 122 118 113 110 103 96 87 79 76 69 42 Placebo 154 153 152 151 149 142 136 130 121 116 110 98 89 79 48

| ORIGINAL ARTICLE                    | Beigel, NEJM 2020     |
|-------------------------------------|-----------------------|
| Remdesivir for the Treatment of Cov | vid-19 — Final Report |

| Subgroup                                                                                   | No. of<br>Patients | Recovery Rate Ratio (95% CI)          |                  |
|--------------------------------------------------------------------------------------------|--------------------|---------------------------------------|------------------|
| All patients                                                                               | 1062               | ; ( <del>••••</del> )                 | 1.29 (1.12-1.49) |
| Geographic region                                                                          |                    |                                       |                  |
| North America                                                                              | 847                | · (                                   | 1.30 (1.10-1.53) |
| Europe                                                                                     | 163                | (                                     | 1.30 (0.91-1.87) |
| Asia                                                                                       | 52                 | ( <u> </u>                            | 1.36 (0.74-2.47) |
| Race                                                                                       |                    |                                       |                  |
| White                                                                                      | 566                | · (                                   | 1.29 (1.06-1.57) |
| Black                                                                                      | 226                | ( <u> </u>                            | 1.25 (0.91-1.72) |
| Asian                                                                                      | 135                | ( <u> </u>                            | 1.07 (0.73-1.58) |
| Other                                                                                      | 135                | (                                     | 1.68 (1.10-2.58) |
| Ethnic group                                                                               |                    |                                       |                  |
| Hispanic or Latino                                                                         | 250                | (                                     | 1.28 (0.94-1.73) |
| Not Hispanic or Latino                                                                     | 755                |                                       | 1.31 (1.10-1.55) |
| Age                                                                                        |                    |                                       |                  |
| 18 to <40 yr                                                                               | 119                | · · · · · · · · · · · · · · · · · · · | 1.95 (1.28–2.97) |
| 40 to <65 yr                                                                               | 559                |                                       | 1.19 (0.98-1.44) |
| ≥65 yr                                                                                     | 384                | <u>}</u> →)                           | 1.29 (1.00-1.67) |
| Sex                                                                                        |                    |                                       |                  |
| Male                                                                                       | 684                | · (                                   | 1.30 (1.09–1.56) |
| Female                                                                                     | 278                | <b>←</b> →→                           | 1.31 (1.03-1.66) |
| Symptoms duration                                                                          |                    |                                       |                  |
| ≤10 days                                                                                   | 676                | ( <u> </u> ●        )                 | 1.37 (1.14–1.64) |
| >10 days                                                                                   | 383                | ( 1 )                                 | 1.20 (0.94–1.52) |
| Baseline ordinal score                                                                     |                    |                                       |                  |
| 4 (not receiving oxygen)                                                                   | 138                |                                       | 1.29 (0.91–1.83) |
| 5 (receiving oxygen)                                                                       | 435                | ( ← ● → →                             | 1.45 (1.18-1.79) |
| <ol> <li>(receiving high-flow oxygen or<br/>noninvasive mechanical ventilation)</li> </ol> | 193                | ← → →                                 | 1.09 (0.76–1.57) |
| 7 (receiving mechanical ventilation or ECMO)                                               | 285                | 0.33 0.50 1.00 2.00 3.00              | 0.98 (0.70–1.36) |
|                                                                                            |                    | Placebo Better Remdesivir Better      |                  |



### Repurposed antiviral drugs for COVID-19 -interim WHO SOLIDARITY trial results

WHO Solidarity trial consortium\*

\*A complete list of SOLIDARITY Trial investigators is provided in the Supplementary Appendix.

#### CONCLUSIONS

These Remdesivir, Hydroxychloroquine, Lopinavir and Interferon regimens **appeared to have little or no effect on hospitalized COVID-19**, as indicated by overall mortality, initiation of ventilation and duration of hospital stay. The mortality findings contain most of the randomized evidence on Remdesivir and Interferon, and are consistent with metaanalyses of mortality in all major trials. (Funding: WHO. Registration: ISRCTN83971151, NCT04315948)

Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial



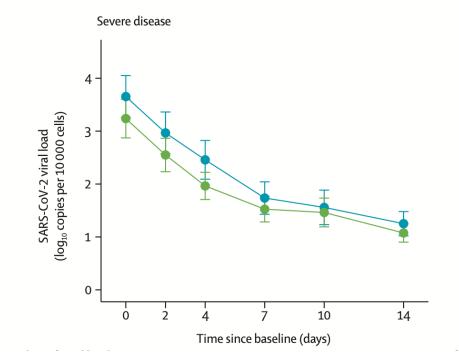
Lancet Infect Dis 2021

Published **Online** September 14, 2021 https://doi.org/10.1016/ S1473-3099(21)00485-0

Florence Ader, Maude Bouscambert-Duchamp, Maya Hites, Nathan Peiffer-Smadja, Julien Poissy, Drifa Belhadi, Alpha Diallo, Minh-Patrick Lê, Gilles Peytavin, Thérèse Staub, Richard Greil, Jérémie Guedj, Jose-Artur Paiva, Dominique Costagliola, Yazdan Yazdanpanah, Charles Burdet\*, France Mentré\*, and the DisCoVeRy Study Group

Methods DisCoVeRy was a phase 3, open-label, adaptive, multicentre, randomised, controlled trial conducted in 48 sites in Europe (France, Belgium, Austria, Portugal, Luxembourg). Adult patients (aged ≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and illness of any duration were eligible if they had clinical evidence of hypoxaemic pneumonia, or required oxygen supplementation. Exclusion criteria included elevated liver enzymes, severe chronic kidney disease, any contraindication to one of the studied treatments or their use in the 29 days before random assignment, or use of ribavirin, as well as pregnancy or breastfeeding. Participants were

Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial


Florence Ader, Maude Bouscambert-Duchamp, Maya Hites, Nathan Peiffer-Smadja, Julien Poissy, Drifa Belhadi, Alpha Diallo, Minh-Patrick Lê, Gilles Peytavin, Thérèse Staub, Richard Greil, Jérémie Guedj, Jose-Artur Paiva, Dominique Costagliola, Yazdan Yazdanpanah, Charles Burdet\*, France Mentré\*, and the DisCoVeRy Study Group

In this randomised controlled trial, the use of remdesivir for the treatment of hospitalised patients with COVID-19 was not associated with clinical improvement at day 15 or day 29, nor with a reduction in mortality, nor with a reduction in SARS-CoV-2 RNA.



#### Lancet Infect Dis 2021

Published **Online** September 14, 2021 https://doi.org/10.1016/ S1473-3099(21)00485-0



Data are mean (95% CI). Green lines show the remdesivir group. Blue lines show the control group. LSMD=least-square mean difference.

### BARICITINIB

The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

### Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19

#### **METHODS**

We conducted a double-blind, randomized, placebo-controlled trial evaluating baricitinib plus remdesivir in hospitalized adults with Covid-19. All the patients received remdesivir ( $\leq 10$  days) and either baricitinib ( $\leq 14$  days) or placebo (control). The primary outcome was the time to recovery. The key secondary outcome was clinical status at day 15.

### 1.00 0.75 0.50 0.25 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Days

D Baseline Ordinal Score of 6



#### CONCLUSIONS

Baricitinib plus remdesivir was superior to remdesivir alone in reducing recovery time and accelerating improvement in clinical status among patients with Covid-19, notably among those receiving high-flow oxygen or noninvasive ventilation. The combination was associated with fewer serious adverse events. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04401579.)

### **COVID-19 Principles of Treatment**

- Antiviral therapy
- Oxygen therapy
- Anti-inflammatory therapy
- Anti-thrombotic therapy
- Antimicrobial therapy
- Plasma/monoclonal antibodies therapy

# **OSSIGENOTERAPIA**

# Cenni di Terapia (1) -

### Ossigenoterapia

### SpO2 target > 92%. Se BPCO 88-94%

- O2 terapia con cannule nasale 1-6 litri massimo
- Maschera di Venturi fino al 60%
- Maschera Reservoir 10-15 litri/min

### Se la SpO2 non è a target o peggiora iniziare

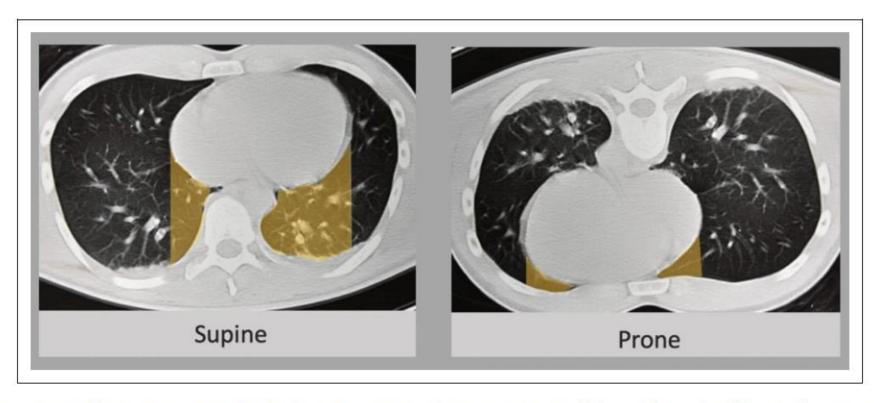
- 1. CPAP
  - Iniziale setting a 7,5 cmH2O, incrementabile fino a massimo 10 cm H2O
  - FiO2 60-100% da titolare in base all'andamento
- NIV con PEEP 5 setting iniziale come per CPAP e PSV con setting iniziale 6 cmH2O, valutando il Volume Corrente FiO2 35-80% da titolare in base alla SpO2. Questa modalità è preferibile nei BPCO o dove la CPAP non funziona o provoca ipercapnia.
- Se non controindicato e fattibile tecnicamente considerare la pronazione a paziente sveglio per 8-12 ore al giorno. Se difficile, modificare il decubito del paziente da un fianco all'altro ogni 2-3 ore.

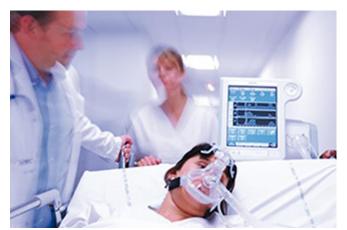
| Valvol  | a        | FiO2 |
|---------|----------|------|
| Celeste | 2 l/min  | 24%  |
| Gialla  | 4 V/min  | 28%  |
| Bianca  | 6 l/min  | 31%  |
| Verde   | 8 l/min  | 35%  |
| Blu     | 10 l/min | 40%  |
| Arancio | 12 l/min | 50%  |
| Rosa    | 15 l/min | 60%  |
|         |          |      |



### **OSSIGENOTERAPIA**

### Proning in Non-Intubated (PINI) in Times of COVID-19: Case Series and a Review





Figure 5. Comparison of lung compression by the heart in supine and prone positions (Adapted from the efficacy of prone position in acute respiratory distress syndrome patients: a pathophysiology-based review. V Koulouras, World J Crit Care Med. 2016;5(2): Page 126).

# **OSSIGENOTERAPIA**

Ossigenoterapia

- Se necessario, ventilazione non invasiva (NIV), cPAP (continuous positive airway pressure), HFNO (high-flow nasal oxygen)
- Idratazione endovenosa
- Terapia antibiotica empirica o mirata





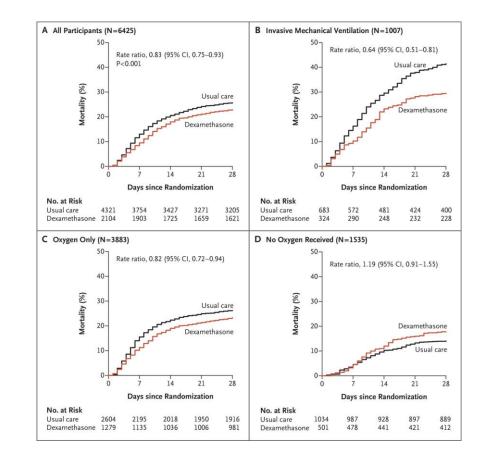
### **COVID-19 Principles of Treatment**

- Antiviral therapy
- Oxygen therapy

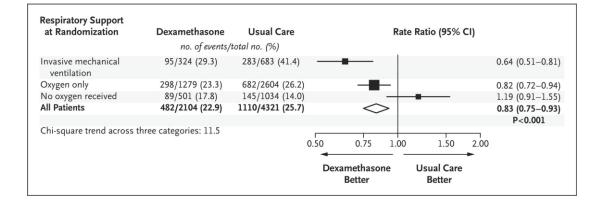
Anti-inflammatory therapy

- Anti-thrombotic therapy
- Antimicrobial therapy
- Plasma/monoclonal antibodies therapy

# **CORTICOSTEROID FOR COVID**




**Recommendations**: The panel made two recommendations: a strong recommendation for systemic (i.e. intravenous or oral) corticosteroid therapy (e.g. 6 mg of dexamethasone orally or intravenously daily or 50 mg of hydrocortisone intravenously every 8 hours) for 7 to 10 days in patients with severe and critical COVID-19, and a conditional recommendation not to use corticosteroid therapy in patients with non-severe COVID-19.


### DEXAMETHASONE

**ORIGINAL ARTICLE** 

## Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report



The RECOVERY Collaborative Group\*



#### Table 2. Primary and Secondary Outcomes.

| Outcome                                   | Dexamethasone<br>(N=2104) | Usual Care<br>(N=4321)        | Rate or Risk Ratio<br>(95% CI)* |
|-------------------------------------------|---------------------------|-------------------------------|---------------------------------|
|                                           |                           | no./total no. of patients (%) |                                 |
| Primary outcome                           |                           |                               |                                 |
| Mortality at 28 days                      | 482/2104 (22.9)           | 1110/4321 (25.7)              | 0.83 (0.75–0.93)                |
| Secondary outcomes                        |                           |                               |                                 |
| Discharged from hospital within 28 days   | 1413/2104 (67.2)          | 2745/4321 (63.5)              | 1.10 (1.03–1.17)                |
| Invasive mechanical ventilation or death† | 456/1780 (25.6)           | 994/3638 (27.3)               | 0.92 (0.84–1.01)                |
| Invasive mechanical ventilation           | 102/1780 (5. <b>7)</b>    | 285/3638 (7.8)                | 0.77 (0.62–0.95)                |
| Death                                     | 387/1780 (21.7)           | 827/3638 (22.7)               | 0.93 (0.84–1.03)                |

## **COVID-19 Principles of Treatment**

<sup>a</sup>Propensity score matching analysis was Cox regression in the matched cohort

Internal and Emergency Medicine https://doi.org/10.1007/s11739-021-02655-6

**IM - ORIGINAL** 

Timing of corticosteroids impacts mortality in hospitalized COVID-19 patients

Amit Bahl<sup>1</sup> · Steven Johnson<sup>1</sup> · Nai-Wei Chen<sup>2</sup>

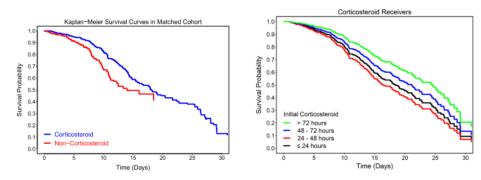



Figure 1. Kaplan-Meier survival curve for corticosteroids treatment. Figure shows overall survival for propensity score-matched patients treated with or without corticosteroids. The estimated survival curves were pooled from 20 imputed datasets Figure 2. Survival curve for the timing of corticosteroids treatment. Figure shows overall survival of study patients associated with the initial receipt of corticosteroids treatment during the hospitalization. The direct adjusted survival curves were estimated based on a multivariable analysis and pooled from 20 imputed datasets

Patients receiving first dose of corticosteroids>72 h into hospitalization had a lower risk of death compared to patients with first dose at earlier time intervals (HR 0.56, 95% CI 0.38–0.82; p=0.003).

There was a mortality beneft in patients with>7 days of symptom onset to initiation of corticosteroids (HR 0.56, 95% CI 0.33– 0.95; p=0.03).

In patients receiving oxygen therapy, corticosteroids reduced risk of death in mechanically ventilated patients (HR 0.38, 95% CI 0.24–0.60; p7 days should trigger initiation of corticosteroids.

In the absence of invasive mechanical ventilation, corticosteroids should be initiated if the patient remains hospitalized at 72 h

### **TOCILIZUMAB**

#### SYSTEMATIC REVIEW | ARTICLES IN PRESS

### Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis

Imad M. Tleyjeh A 🖾 • Zakariya Kashour • Moussab Damlaj • ... Rana Tleyjeh • Leslie Hassett • Tarek Kashour • Show all authors

Published: November 05, 2020 • DOI: https://doi.org/10.1016/j.cmi.2020.10.036

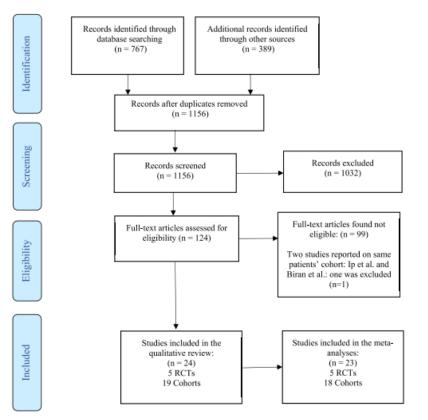



Fig. 1. Flow diagram of the assessment of studies identified in the systematic review.

| 1                          | TOCILIZU     | MAB       | CONTR       | ROL   |        | <b>Risk Ratio</b>  | Risk Ratio                                                  | Risk of Bias |
|----------------------------|--------------|-----------|-------------|-------|--------|--------------------|-------------------------------------------------------------|--------------|
| Study or Subgroup          | Events       | Total     | Events      | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                          | ABCDEFG      |
| BACC Bay                   | 9            | 161       | 3           | 81    | 5.9%   | 1.51 [0.42, 5.42]  |                                                             |              |
| CORIMUNO-TOCI              | 7            | 63        | 8           | 67    | 11.5%  | 0.93 [0.36, 2.42]  |                                                             |              |
| COVACTA                    | 58           | 294       | 28          | 144   | 55.9%  | 1.01 [0.68, 1.52]  | -                                                           |              |
| EMPACTA                    | 20           | 194       | 17          | 195   | 25.2%  | 1.18 [0.64, 2.19]  |                                                             |              |
| RCT-TCZ-COVID-19           | 2            | 60        | 1           | 66    | 1.4%   | 2.20 [0.20, 23.65] | · · · · · · · · · · · · · · · · · · ·                       |              |
| Total (95% CI)             |              | 772       |             | 553   | 100.0% | 1.09 [0.80, 1.49]  | •                                                           |              |
| Total events               | 96           |           | 57          |       |        |                    |                                                             |              |
| Heterogeneity: Chi#= 0     | 0.88, df = 4 | (P = 0.9) | (3); F = 09 | 6     |        |                    |                                                             | -            |
| Test for overall effect: 2 | Z=0.57 (P    | = 0.57)   |             |       |        |                    | 0.01 0.1 1 10 10<br>Favours [Tocilizumab] Favours [control] | 00           |

#### В

| ,                                 | TOCILIZU                          | UMAB         | CONT                                 | ROL   |        | <b>Risk Ratio</b>  | Risk Ratio                             | Risk of Bias |
|-----------------------------------|-----------------------------------|--------------|--------------------------------------|-------|--------|--------------------|----------------------------------------|--------------|
| Study or Subgroup                 | Events                            | Total        | Events                               | Total | Weight | M-H, Fixed, 95% C  | M-H, Fixed, 95% CI                     | ABCDEFG      |
| BACC Bay                          | 11                                | 161          | 8                                    | 81    | 14.5%  | 0.69 [0.29, 1.65   | 1                                      |              |
| CORIMUNO-TOCI                     | 5                                 | 63           | 14                                   | 67    | 18.5%  | 0.38 [0.15, 0.99   | j                                      |              |
| COVACTA                           | 51                                | 183          | 33                                   | 90    | 60.2%  | 0.76 [0.53, 1.09   | 1 💻                                    |              |
| RCT-TCZ-COVID-19                  | 6                                 | 63           | 5                                    | 63    | 6.8%   | 1.20 [0.39, 3.73   | 1                                      |              |
| Fotal (95% CI)                    |                                   | 470          |                                      | 301   | 100.0% | 0.71 [0.52, 0.96   | •                                      |              |
| Total events                      | 73                                |              | 60                                   |       |        |                    |                                        |              |
| Heterogeneity: Chi# =             | 2.59, df= 3                       | (P = 0.4)    | 46); F = 0                           | %     |        |                    | the start start                        | 100          |
| Test for overall effect:          | Contraction and the second second | 101 C 2010 C |                                      |       |        |                    | 0.01 0.1 1 10                          | 100          |
|                                   |                                   |              |                                      |       |        |                    | Favours [Tocilizumab] Favours [contro  | 24           |
| 2                                 |                                   |              |                                      |       |        |                    |                                        |              |
| -                                 | TOCILIZU                          | JMAB         | CONTR                                | OL    |        | Risk Ratio         | Risk Ratio                             | Risk of Bias |
| Study or Subgroup                 | Events                            | Total        | Events                               | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% Cl                     | ABCDEFG      |
| BACC Bay                          | 17                                | 161          | 10                                   | 81    | 10.7%  | 0.86 [0.41, 1.78]  |                                        |              |
| CORIMUNO-TOCI                     | 11                                | 63           | 18                                   | 63    | 14.5%  | 0.61 [0.31, 1.19]  |                                        |              |
| COVACTA                           | 53                                | 183          | 38                                   | 90    | 41.1%  | 0.69 [0.49, 0.96]  |                                        |              |
| EMPACTA                           | 24                                | 194          | 37                                   | 195   | 29.8%  | 0.65 [0.41, 1.05]  |                                        |              |
| RCT-TCZ-COVID-19                  | 6                                 | 60           | 5                                    | 63    | 3.9%   | 1.26 [0.41, 3.91]  |                                        |              |
| Total (95% CI)                    |                                   | 661          |                                      | 492   | 100.0% | 0.71 [0.56, 0.89]  | •                                      |              |
| Total events                      | 111                               |              | 108                                  |       |        |                    |                                        |              |
| Heterogeneity: Chi <sup>2</sup> = | 1.59, df = 4                      | (P = 0.8)    | 81); I <sup>2</sup> = 0 <sup>4</sup> | %     |        |                    | 0.01 0.1 1 10                          | 100          |
| Test for overall effect:          | Z = 2.90 (P                       | = 0.004      | )                                    |       |        |                    | Favours [Tocilizumab] Favours [control |              |
|                                   |                                   |              |                                      |       |        |                    | avours [rounzumab] Pavours [control    |              |

A: Forest plot for the effect of tocilizumab on 28-30 days mortality in randomized controlled trials with corresponding risk of bias. B: Forest plot for the effect of tocilizumab on risk for mechanical ventilation in randomized controlled trials with corresponding risk of bias. C: Forest plot for the effect of tocilizumab on 28-30 days composite outcome in randomized controlled trials with corresponding risk of bias

### TOCILIZUMAB

Forest plot of the association between tocilizumab use and short-term mortality in COVID-19 patients from cohorts at moderate risk of bias: stratified by disease severity







| Study<br>ID                                            | Effect<br>Estimates (95% C | %<br>I)Weight |
|--------------------------------------------------------|----------------------------|---------------|
| Moderate-Severe                                        |                            |               |
| Holt et al.                                            | 0.40 (0.03, 2.04)          | 0.39          |
| Martinez-Sanz et al.                                   | 0.34 (0.16, 0.72)          | 3.17          |
| Roomi et al.                                           | 0.30 (0.05, 1.35)          | 0.71          |
| Ramaswamy et al.                                       | 0.25 (0.07, 0.90)          | 1.11          |
| Subtotal (I-squared = 0.0%, p = 0.975)                 | 0.32 (0.18, 0.57)          | 5.38          |
| Severe                                                 |                            |               |
| Guaraldi et al.                                        | 0.38 (0.17, 0.83)          | 2.86          |
| Colaneri et al.                                        | 0.88 (0.07, 3.41)          | 0.50          |
| Rossi et al.                                           | 0.29 (0.17, 0.53)          | 5.48          |
| Narain et al.                                          | 0.72 (0.40, 1.28)          | 5.31          |
| Gokhale et al.                                         | 0.62 (0.43, 0.90)          | 12.22         |
| Mikulska et al.                                        | 0.65 (0.23, 1.82)          | 1.69          |
| Subtotal (I-squared = 30.2%, p = 0.209)                | 0.52 (0.37, 0.72)          | 28.06         |
| Severe-Critical                                        |                            |               |
| Roumier et al.                                         | 0.40 (0.06, 0.96)          | 0.95          |
| Rossotti et al.                                        | 0.50 (0.26, 0.95)          | 4.28          |
| Hill et al.                                            | 0.57 (0.21, 1.52)          | 1.84          |
| Tsai et al.                                            | 1.00 (0.54, 1.64)          | 5.83          |
| Gupta et al.                                           | 0.64 (0.50, 0.81)          | 27.24         |
| Subtotal (I-squared = 0.0%, p = 0.467)                 | 0.65 (0.53, 0.80)          | 40.15         |
| Critical                                               |                            |               |
| Somers et al.                                          | 0.55 (0.33, 0.90)          | 6.99          |
| Eimer et al.                                           | 0.52 (0.19, 1.39)          | 1.82          |
| Biran et al.                                           | 0.64 (0.47, 0.87)          | 17.60         |
| Biran et al.<br>Subtotal (I-squared = 0.0%, p = 0.837) | 0.61 (0.47, 0.78)          | 26.41         |
| Overall (I-squared = 2.5%, p = 0.425)                  | 0.58 (0.51, 0.66)          | 100.00        |
| NOTE: Weights are from random effects analysis         |                            |               |

### **TOCILIZUMAB**

The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

### Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia

#### METHODS

We randomly assigned (in a 2:1 ratio) patients hospitalized with Covid-19 pneumonia who were not receiving mechanical ventilation to receive standard care plus one or two doses of either tocilizumab (8 mg per kilogram of body weight intravenously) or placebo. Site selection was focused on the inclusion of sites enrolling high-risk and minority populations. The primary outcome was mechanical ventilation or death by day 28.

| Table 2. Primary and Key Secondary Efficacy Outcomes by Day 28 in the Modified Intention-to-Treat Population.* |                          |                        |                          |                                    |          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|--------------------------|------------------------------------|----------|--|--|--|--|
| Outcome                                                                                                        | Tocilizumab<br>(N = 249) | Placebo<br>(N = 128)   | Hazard Ratio<br>(95% CI) | Weighted<br>Difference<br>(95% CI) | P Value† |  |  |  |  |
| Primary outcome: mechanical ventilation<br>or death — % (95% CI)‡                                              | 12.0 (8.5 to 16.9)       | 19.3 (13.3 to 27.4)    | 0.56 (0.33 to 0.97)      | NA                                 | 0.04     |  |  |  |  |
| Secondary outcomes                                                                                             |                          |                        |                          |                                    |          |  |  |  |  |
| Median time to hospital discharge or<br>readiness for discharge (95% CI)<br>— days§                            | 6.0 (6.0 to 7.0)         | 7.5 (7.0 to 9.0)       | 1.16 (0.91 to 1.48)      | NA                                 |          |  |  |  |  |
| Median time to improvement in<br>clinical status (95% CI) — days∬¶                                             | 6.0 (6.0 to 7.0)         | 7.0 (6.0 to 9.0)       | 1.15 (0.90 to 1.48)      | NA                                 |          |  |  |  |  |
| Median time to clinical failure<br>(95% CI) — days§                                                            | NE                       | NE                     | 0.55 (0.33 to 0.93)      | NA                                 |          |  |  |  |  |
| Death — no. (% [95% CI])∥                                                                                      | 26 (10.4 [7.2 to 14.9])  | 11 (8.6 [4.9 to 14.7]) | NA                       | 2.0 (-5.2 to 7.8)**                |          |  |  |  |  |

### BARICITINIB

Table 4. Multivariate Cox-regression analyses for the primary outcome in the propensity score matched populations from the University of Pisa and the Albacete Hospital. Selection bias was addressed by propensity score analysis. Briefly, this is a two-phase technique used to estimate a treatment effect in comparative groups selected by non-random means. In the first phase of a propensity score analysis, variables that influence selection to group assignment are used to model the probability of receiving treatment (or of being in the reference group, in this case, the baricitinib group). The resulting probability is the propensity score. In the second phase, the propensity score is used to adjust for pre-existing group differences in the analysis of the relevant outcomes. There are several ways to use propensity scores such as stratification variables, matching patients based on their propensity score or their use as a weighting or adjustment variable during multivariate analysis. In the current study, each baricitinib patient was matched to a control patients based on comparable propensity scores. Assuming that all relevant covariates are included in the propensity score model, the group effect observed in a propensity score analysis represents an unbiased estimate of the true treatment effect.

HR (95% CI)

p

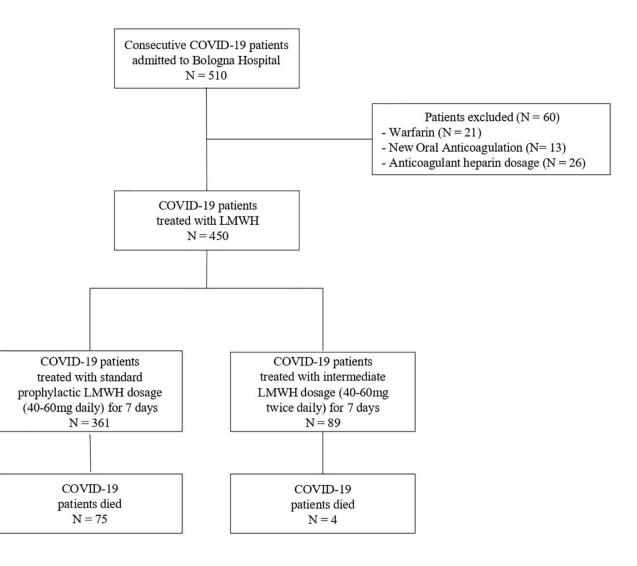
Baricitinib 0.29 (0.15-0.58) 0.0001 1.01 (0.98-1.04) 0.470 Age Male sex 1.13 (0.54-2.34) 0.750 Hypertension 1.31 (0.52-3.32) 0.572 0.51 (0.23-1.17) 0.113 Diabetes Chronic Obstructive Lung Disease 0.51 (0.17-1.54) 0.230 Cardiovascular disease 1.41(0.68-2.92) 0.351 Cronic kidney disease 1.45 (0.51-4.15) 0.491 1.18 (0.49-2.87) 0.709 Solid cancer Charlson Comorbidity Index 1.03 (0.90-1.17) 0.680 Baseline PaO<sub>2</sub>/FiO<sub>2</sub> 0.823 1.00 (1.00-1.00) 0.657 Lymphocyte count (/mcL) 1.00 (1.00-1.00) Alanine aminotransferase 1.01 (1.00-1.03) 0.026 0.384 Hydroxychloroguine 2.77 (0.28-27.41) Lopinavir/Ritonavir 1.18 (0.38-3.61) 0.776 Glucocorticoids 1.79 (0.60-5.34) 0.299 Low Molecular Weight Heparin 0.10 (0.01-1.33) 0.081 Antibiotics 2.34 (0.29-18.90) 0.427

Strata 💳 Barictinib Yes 💳 Barictinib No 1.00.9 0.8 0.7 Survival probability 0.6 0.5 0.4 0.3 p < 0.0001 0.2 0.14 0.0 10 15 20 25 30 40 1995 Dava Number at risk Baricitinib Yes 76. 2413 83 81 56 36 83 68 36 21 8 6 20 25 án. 10 15 30 ŵ, Days

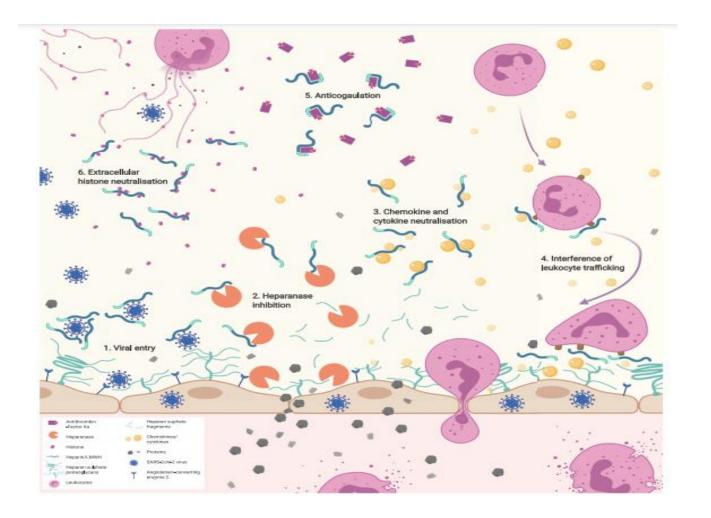
### **COVID-19 Principles of Treatment**

- > Antiviral therapy
- > Oxygen therapy
- Anti-inflammatory therapy
- Anti-thrombotic therapy
- Antimicrobial therapy
- Plasma/monoclonal antibodies therapy

#### **BRIEF RESEARCH REPORT ARTICLE**


Front. Pharmacol., 06 August 2020 | https://doi.org/10.3389/fphar.2020.01124

### Preliminary Experience With Low Molecular Weight Heparin Strategy in COVID-19 Patients


Out of 450 patients, 361 received standard deep vein thrombosis (DVT) prophylaxis enoxaparin treatment (40-60mg daily) and 89 patients received intermediate enoxaparin dosage (40–60 mg twice daily) for 7 days.

No significant differences in the main demographic characteristics and laboratory testings at admission were observed in the two heparin regimen subgroups, except for older age and prevalence of hypertension in the group treated with "standard" prophylaxis LMWH dosage.

The intermediate LMWH administration was associated with a lower in-hospital all-cause mortality compared to the "standard" prophylactic LMWH dosage (18.8% vs. 5.8%, p = 0.02). This difference remained significant after adjustment with the propensity score for variables that differed significantly between the dosage groups (OR= 0.260, 95% CI 0.089–0.758, p=0.014).



### Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients



Potential beneficial, non-anticoagulant mechanisms underlying treatment of COVID-19 patients with heparin/LMWH, which include:

- (i) Inhibition of heparanase activity, responsible for endothelial leakage;
- (ii) Neutralisation of chemokines, and cytokines;
- (iii) Interference with leukocyte trafficking;
- (iv) Reducing viral cellular entry, and
- (v) Neutralisation of extracellular cytotoxic histones.

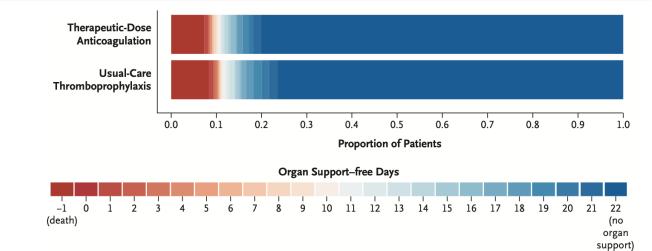
Baranca Buijsers et al. EBIO Medicine, SEPTEMBER 01, 2020

Le proprietà dell'eparina consentirebbero in pazienti affetti da Sars-CoV-2:

 – a livello polmonare, <u>l'inibizione dell'infiammazione</u>, della formazione di trombi e dello sviluppo di ARDS (in quanto l'attivazione del sistema di coagulazione risulta rilevante nella patogenesi di quest'ultima grave complicazione respiratoria)

 – a livello cardiaco, una riduzione della formazione di trombi coronarici ed intracardiaci, potenziali effetti benefici inibendo lo sviluppo di miocarditi e cardiomiopatie

 a livello vascolare, una potenziale riduzione dei processi di ischemia microvascolare e potenziali effetti benefici sulla disfunzione multiorgano


The NEW ENGLAND JOURNAL of MEDICINE

**ORIGINAL ARTICLE** 

### Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19

The ATTACC, ACTIV-4a, and REMAP-CAP Investigators\*

This article was published on August 4, 2021



| Table 3. Secondary Outcomes among All Patients with Moderate Disease.* |                                     |                                  |                                                               |                                                       |                                                                 |  |  |
|------------------------------------------------------------------------|-------------------------------------|----------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--|--|
| Outcome                                                                | Therapeutic-Dose<br>Anticoagulation | Usual-Care<br>Thromboprophylaxis | Adjusted<br>Difference in Risk<br>(95% Credible<br>Interval)† | Adjusted<br>Odds Ratio<br>(95% Credible<br>Interval)∷ | Probability of Effect<br>of Therapeutic-Dose<br>Anticoagulation |  |  |
|                                                                        | no. of patien                       | ts/total no. (%)                 | percentage points                                             |                                                       | %                                                               |  |  |
| Survival until hospital dis-<br>charge                                 | 1085/1171 (92.7)                    | 962/1048 (91.8)                  | 1.3 (-1.1 to 3.2)                                             | 1.21 (0.87 to 1.68)∬                                  | 87.1¶                                                           |  |  |
| Survival without organ sup-<br>port at 28 days∥                        | 932/1175 (79.3)                     | 789/1046 (75.4)                  | 4.5 (0.9 to 7.7)                                              | 1.30 (1.05 to 1.61)                                   | 99.1¶                                                           |  |  |
| Progression to intubation<br>or death**                                | 129/1181 (10.9)                     | 127/1050 (12.1)                  | -1.9 (-4.1 to 0.7)                                            | 0.82 (0.63 to 1.07)                                   | 92.2¶                                                           |  |  |
| Major thrombotic event<br>or death                                     | 94/1180 (8.0)                       | 104/1046 (9.9)                   | -2.6 (-4.4 to -0.2)                                           | 0.72 (0.53 to 0.98)                                   | 98.0¶                                                           |  |  |
| Major thrombotic event                                                 | 13/1180 (1.1)                       | 22/1046 (2.1)                    |                                                               |                                                       |                                                                 |  |  |
| Death in hospital                                                      | 86/1180 (7.3)                       | 86/1046 (8.2)                    |                                                               |                                                       |                                                                 |  |  |
| Major bleeding                                                         | 22/1180 (1.9)                       | 9/1047 (0.9)                     | 0.7 (-0.1 to 2.3)                                             | 1.80 (0.90 to 3.74)                                   | 95.5††                                                          |  |  |



October 7, 2021

Efficacy and Safety of Therapeutic-Dose Heparin vs Standard Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in Highrisk Hospitalized Patients With COVID-19 The HEP-COVID Randomized

Clinical Trial

**Objective** To evaluate the effects of therapeutic-dose low-molecular-weight heparin (LMWH) vs institutional standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19.

Main Outcomes and Measures The primary efficacy outcome was venous thromboembolism (VTE), arterial thromboembolism (ATE), or death from any cause, and the principal safety outcome was major bleeding at  $30 \pm 2$  days. Data were collected and adjudicated locally by blinded investigators via imaging, laboratory, and health record data.

**Conclusions and Relevance** In this randomized clinical trial, therapeutic-dose LMWH reduced major thromboembolism and death compared with institutional standard heparin thromboprophylaxis among inpatients with COVID-19 with very elevated Ddimer levels. The treatment effect was not seen in ICU patients.

### **COVID-19 Principles of Treatment**

- > Antiviral therapy
- Oxygen therapy
- Anti-inflammatory therapy
- Anti-thrombotic therapy
- Antimicrobial therapy
- Plasma/monoclonal antibodies therapy

## **ANTIMICROBIAL THERAPY**



Contents lists available at ScienceDirect

**Clinical Microbiology and Infection** 



journal homepage: www.clinicalmicrobiologyandinfection.com

Guidelines

### Recommendations for antibacterial therapy in adults with COVID-19 – an evidence based guideline

#### Table 2

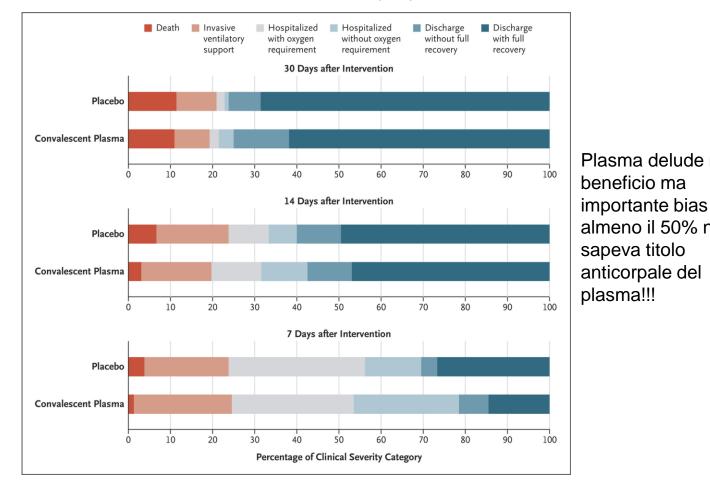
Summary of recommendations

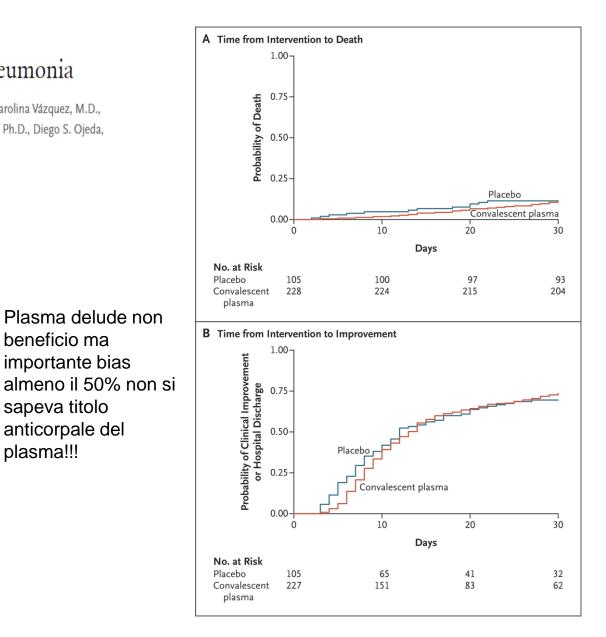
| Recommendation                                                                                                                                                                                                                                                                                                                                                             | Strength | Quality of evidence |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|
| <ol> <li>We generally suggest restrictive use of antibacterial drugs in patients with proven or a high likelihood of COVID-19.<br/>This especially applies for patients upon admission who are mild to moderately ill</li> </ol>                                                                                                                                           | Weak     | Very low            |
| 2. We suggest that exceptions for the restrictive use of antibacterial drugs can be made for patients with proven or a high<br>likelihood of COVID-19 who present with radiological findings and/or inflammatory markers compatible with<br>bacterial co-infection. Other exceptions are patients who are severely ill or immunocompromised*                               | Weak     | GPS                 |
| 3. We recommend maximum efforts to obtain sputum and blood for culture as well as pneumococcal urinary antigen<br>testing before start of empirical antibiotic therapy in patients with proven or high likelihood of COVID-19 upon<br>admission                                                                                                                            | Strong   | GPS                 |
| 4. In case of suspected bacterial co-infection, we suggest against empirical antibiotic treatment covering atypical<br>pathogens in patients with proven or high likelihood of COVID-19 hospitalized at the general ward. Legionella urinary<br>antigen testing should be performed according to local and/or national guidelines for CAP                                  | Weak     | Very low            |
| 5. We recommend that the empirical antibiotic regimens in case of suspected bacterial co-infection depends on the<br>severity of disease and according to local and/or national guidelines. For those fulfilling criteria of mild and moderate-<br>severe CAP, we recommend to follow local and/or national guideline recommendations on antibacterial treatment in<br>CAP | Weak     | Very low            |
| 6. We recommend to follow local and/or national guideline recommendations on antibacterial treatment for patients<br>with COVID-19 and suspected bacterial secondary infection                                                                                                                                                                                             | Strong   | GPS                 |
| 7. We suggest to stop antibiotics when representative sputum and blood culture as well as urinary antigen tests taken<br>before start of empirical antibiotic therapy in patients with proven or high likelihood of COVID-19 show no bacterial<br>pathogens after 48 hours of incubation                                                                                   | Weak     | GPS                 |
| <ol> <li>We suggest an antibiotic treatment duration of five days in patients with COVID-19 and suspected bacterial infection<br/>upon improvement of signs, symptoms and inflammatory markers</li> </ol>                                                                                                                                                                  | Weak     | GPS                 |

\* immunocompromised is defined as the use of chemotherapy for cancer, bone marrow or organ transplantation, immune deficiencies, poorly controlled HIV or AIDS, or prolonged use of corticosteroids or other immunosuppressive medications; GPS: good practice statement.

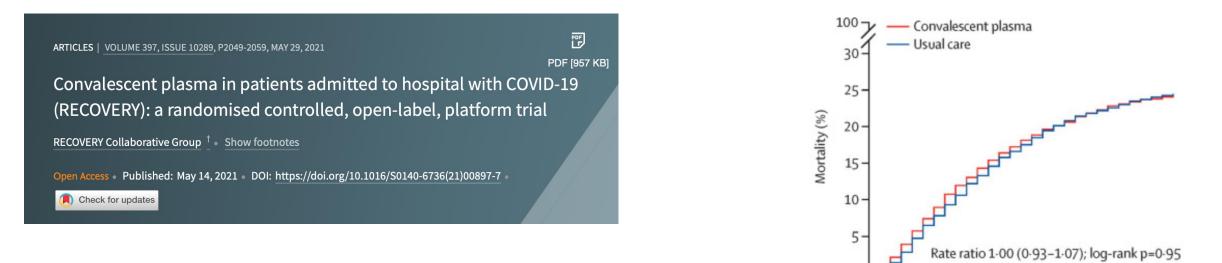
### **COVID-19 Principles of Treatment**

- Antiviral therapy
- Oxygen therapy
- Anti-inflammatory therapy
- Anti-thrombotic therapy
- Antimicrobial therapy


Plasma/monoclonal antibodies therapy


# **PLASMA**

#### ORIGINAL ARTICLE


### A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia

Ventura A. Simonovich, M.D., Leandro D. Burgos Pratx, M.D., Paula Scibona, M.D., María V. Beruto, M.D., Marcelo G. Vallone, M.D., Carolina Vázquez, M.D., Nadia Savoy, M.D., Diego H. Giunta, M.D., M.P.H., Ph.D., Lucía G. Pérez, M.D., Marisa del L. Sánchez, M.D., Andrea Vanesa Gamarnik, Ph.D., Diego S. Ojeda, Ph.D., <u>et al.</u>, for the PlasmAr Study Group<sup>\*</sup>





## **PLASMA**



28

21

14

Days since randomisation

Number at risk

### Interpretation

In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes.







Press release no. 641

8 April 2021

COVID-19: TSUNAMI STUDY, PLASMA DOES NOT REDUCE THE RISK OF RESPIRATORY DAMAGE OR DEATH

The data analysis was competed of the randomised and controlled clinical trial called TSUNAMI, promoted by the ISS and AIFA and coordinated by the ISS, on the therapeutic role of convalescent plasma in patients who have developed the COVID-19 disease. 27 clinical centres distributed throughout Italy participated in the study. 487 patients were enrolled (of which 324 in Tuscany, 77 in Umbria, 66 in Lombardy and 20 from other regions).

# Overall, TSUNAMI did not show a plasma benefit in terms of reducing the risk of respiratory worsening or death in the first thirty days.

Teatment was generally well tolerated, although adverse events were more frequent in the plasma group. The results of the TSUNAMI study are in line with those (mainly negative) of the international literature, except for patients treated very early with high titre plasma.

# **PLASMA**

RESEARCH ARTICLE

Early versus deferred anti-SARS-CoV-2 convalescent plasma in patients admitted for COVID-19: A randomized phase II clinical trial

### Methods and findings

The study was an open-label, single-center randomized clinical trial performed in an academic medical center in Santiago, Chile, from May 10, 2020, to July 18, 2020, with final fol- low-up until August 17, 2020. The trial included patients hospitalized within the first 7 days of COVID-19 symptom onset, presenting risk factors for illness progression and not on mechanical ventilation. The intervention consisted of immediate CP (early plasma group) versus no CP unless developing prespecified criteria of deterioration (deferred plasma group). Additional standard treatment was allowed in both arms. The primary outcome was a composite of mechanical ventilation, hospitalization for >14 days, or death.

### Conclusions

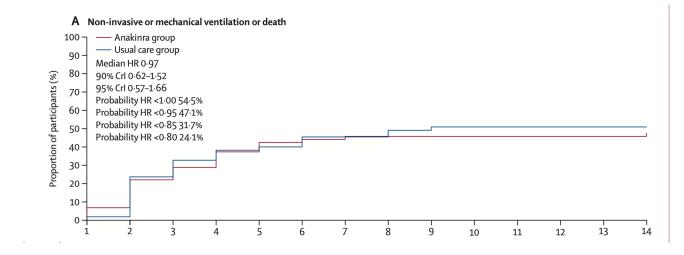
In the present study, we failed to find evidence of benefit in mortality, length of hospitalization, or mechanical ventilation requirement by immediate addition of CP therapy in the early stages of COVID-19 compared to its use only in case of patient deterioration.

Balcells ME, Rojas L, Le Corre N, Mart inez-Valdebenito C, Ceballos ME, Ferre s M, et al. (2021) Early versus deferred anti-SARS-CoV-2 convalescent plasma in patients admitted for COVID-19: A randomized phase II clinical trial. PLoS Med 18(3): e1003415. https://doi.org/ 10.1371/journal.pmed.1003415

## **ANAKINRA**

Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial

The CORIMUNO-19 Collaborative group\*†


### **Methods**

### Study design and participants

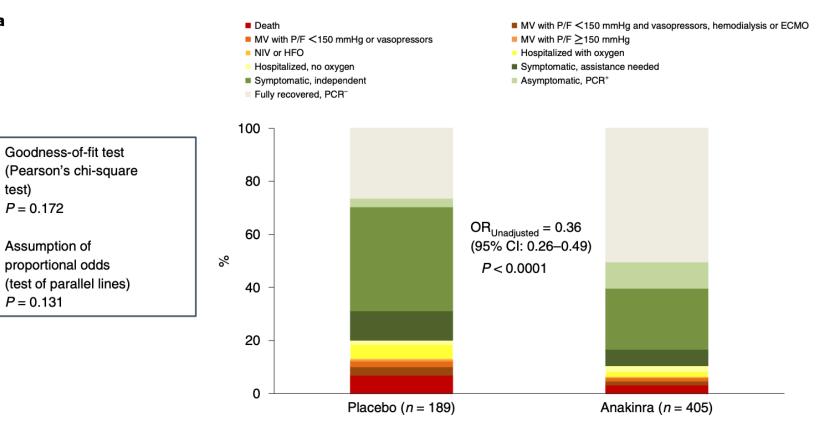
We enrolled patients with COVID-19 from University hospitals in France for a series of randomised controlled trials testing different therapeutic regimens (CORIMUNO-19 cohort). Patients with mild-to-moderate COVID-19 pneumonia and patients with severe and critical COVID-19 pneumonia were included in independent clinical trials. Here we report data from CORIMUNO-ANA-1, a CORIMUNO-19, multicentre, open-label, randomised controlled trial of patients with mild-to-moderate COVID-19 pneumonia.



Published **Online** January 22, 2021 https://doi.org/10.1016/ S2213-2600(20)30556-7



In summary, this randomised clinical trial suggests that **anakinra was not effective in reducing the need for non-invasive or mechanical ventilation or death in patients with COVID-19 and mild-to-moderate pneumonia**. These results are relevant for this patient population at the dose we used and cannot be extended to other populations with other doses. Further studies are needed to assess the efficacy of anakinra in other selected groups of patients with more severe COVID-19 and at other doses.




ARTICLES https://doi.org/10.1038/s41591-021-01499-z

Published online: 03 September 2021 Check for updates

### OPEN Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial

а



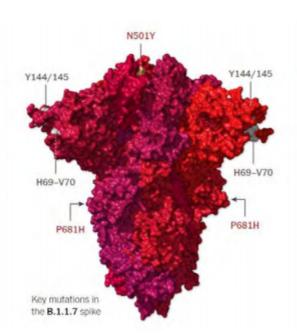
## **Clinical studies evaluating anti-SARS-CoV-2 monoclonal antibodies**

| Sponsors                                      | Drug code                                                                         | Status                         | Trial ID                                                                                                                                                               | Est. start                                                  | Est. primary completion                                      |
|-----------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Junshi Biosciences / Eli Lilly and<br>Company | JS016, LY3832479, LY-CoV016                                                       | Phase 2                        | <u>NCT04441918;</u><br><u>NCT04441931;</u><br><u>NCT04427501</u>                                                                                                       | 6/5/2020; 6/19/2020;<br>6/17/2020                           | Dec 2020; 10/2/2020;<br>3/11/2021                            |
| Brii Biosciences                              | BRII-196                                                                          | Phase 1                        | NCT04479631                                                                                                                                                            | 7/12/2020                                                   | Mar 2021                                                     |
| Brii Biosciences                              | BRII-198                                                                          | Phase 1                        | <u>NCT04479644</u>                                                                                                                                                     | 7/13/2020                                                   | Mar 2021                                                     |
| AbbVie                                        | ABBV-47D11                                                                        | Phase 1<br>pending             | <u>NCT04644120</u>                                                                                                                                                     | 11/27/2020                                                  | May 2021                                                     |
| Sorrento Therapeutics, Inc.                   | COVI-GUARD (STI-1499)                                                             | Phase 1                        | NCT04454398                                                                                                                                                            | 9/17/2020                                                   | Feb 2021                                                     |
| Mabwell (Shanghai) Bioscience<br>Co., Ltd.    | MW33                                                                              | Phase 1                        | NCT04533048                                                                                                                                                            | 8/7/2020                                                    | Dec 2020                                                     |
| HiFiBiO Therapeutics                          | HFB30132A                                                                         | Phase 1                        | <u>NCT04590430</u>                                                                                                                                                     | Oct 2020                                                    | July 2021                                                    |
| Ology Bioservices                             | ADM03820                                                                          | Phase<br>1 pending             | <u>NCT04592549</u>                                                                                                                                                     | 11/16/2020                                                  | Aug 2021                                                     |
| Hengenix Biotech Inc                          | HLX70                                                                             | Phase<br>1 pending             | <u>NCT04561076</u>                                                                                                                                                     | 12/9/2020                                                   | Sep 2021                                                     |
| U. Cologne / Boehringer<br>Ingelheim          | DZIF-10c                                                                          | Phase 1 /2<br>pending          | <u>NCT04631705;</u><br><u>NCT04631666</u>                                                                                                                              | 11/23/2020;<br>11/23/2020                                   | 6/30/2021;<br>6/30/2021                                      |
| Sorrento Therapeutics, Inc.                   | COVI-AMG (STI-2020)                                                               | Phase 1 /2<br>pending          | <u>NCT04584697</u>                                                                                                                                                     | Dec 2020                                                    | April 2021                                                   |
| Beigene                                       | BGB DXP593                                                                        | Phase 1;<br>Phase<br>2 pending | <u>NCT04532294;</u><br>( <u>NCT04551898</u>                                                                                                                            | 8/31/2020;<br>10/30/2020                                    | 10/15/2020;<br>2/28/2021                                     |
| Sinocelltech Ltd.                             | SCTA01                                                                            | Phase 1;<br>Phase 2/3          | <u>NCT04483375;</u><br><u>NCT04644185</u>                                                                                                                              | 7/24/2020;<br>2/10/2021                                     | Nov 2020;<br>5/10/2021                                       |
| Tychan Pte. Ltd.                              | TY027                                                                             | Phase 3 pending                | <u>NCT04429529;</u><br>NCT04649515                                                                                                                                     | 6/9/2020;<br>12/4/2020                                      | Oct 2020;<br>8/31/2020                                       |
| AstraZeneca                                   | AZD7442 (AZD8895 + AZD1061)                                                       | Phase 1;<br>Phase 3<br>pending | NCT04507256;<br>NCT04625725;<br>NCT04625972                                                                                                                            | 8/17/2020;<br>11/17/2020;<br>11/16/2020                     | Sep 2021; 7/31/2021;<br>6/16/2021                            |
| Celltrion                                     | CT-P59                                                                            | Phase 1;<br>Phase 2/3          | NCT04525079;<br>NCT04593641;<br>NCT04602000                                                                                                                            | 7/18/2020; 9/4/2020;<br>9/25/2020                           | Nov 2020; 12/23/2020;<br>Dec 2020                            |
| Vir Biotechnol./GlaxoSmithKline               | VIR-7831/<br>GSK4182136                                                           | Phase 2/3                      | NCT04545060                                                                                                                                                            | 8/27/2020                                                   | Jan 2021                                                     |
| AbCellera / Eli Lilly and Company             | LY-CoV555 (LY3819253);<br>combination of LY-CoV555 with LY-<br>CoV016 (LY3832479) | EUA*                           | <u>NCT04411628 (</u> Phase<br>1); <u>NCT04427501 (</u> Phase 2);<br><u>NCT04497987(</u> Phase 3); <u>NCT04501978 (</u> Phase<br>3);<br><u>NCT04518410 (</u> Phase 2/3) | 5/28/2020;<br>6/13/2020;<br>8/2/2020; 8/4/2020;<br>Aug 2020 | 8/23/2020; 9/15/2020;<br>3/8/2021;<br>July 2021;<br>Nov 2020 |
| Regeneron                                     | REGN-COV2 (REGN10933 +<br>REGN10987)                                              | EUA*                           | <u>NCT04425629</u> (Phase<br>1/2); <u>NCT04426695</u> (Phase<br>1/2); <u>NCT04452318</u> (Phase 3)                                                                     | 6/16/2020;<br>6/10/2020; 7/13/2020                          | 12/19/2020; 1/25/2021;<br>6/15/2021                          |

## **CASIRIVIMAB AND IMDEVIMAB**

Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial REGEN-COV is a combination of 2 monoclonal antibodies (casirivimab and imdevimab) that bind to two different sites on the receptor binding domain of the SARS-CoV-2 spike protein. **Findings:** Between 18 September 2020 and 22 May 2021, 9785 patients were randomly allocated to receive usual care plus REGEN-COV or usual care alone,

Table 2: Effect of allocation to REGEN-COV on key study outcomes among seronegative participants


|                                                           | REGEN-COV<br>(n=1633) | Usual Care<br>(n=1520) | RR (95% CI)      |
|-----------------------------------------------------------|-----------------------|------------------------|------------------|
|                                                           | (11-1055)             | (11-1320)              |                  |
| Primary outcome                                           |                       |                        |                  |
| Mortality at 28 days                                      | 396 (24%)             | 451 (30%)              | 0.80 (0.70-0.91) |
| Secondary outcomes                                        |                       |                        |                  |
| Median duration of hospitalisation, days                  | 13 (7 to >28)         | 17 (7 to >28)          | -                |
| Discharged from hospital within 28 days                   | 1046 (64%)            | 878 (58%)              | 1.19 (1.08-1.30) |
| Invasive mechanical ventilation or death*                 | 487/1599 (30%)        | 542/1484 (37%)         | 0.83 (0.75-0.92) |
| Invasive mechanical ventilation                           | 189/1599 (12%)        | 200/1484 (13%)         | 0.88 (0.73-1.06) |
| Death                                                     | 383/1599 (24%)        | 434/1484 (29%)         | 0.82 (0.73-0.92) |
| Subsidiary outcomes                                       |                       |                        |                  |
| Use of ventilation †                                      | 355/1267 (28%)        | 370/1143 (32%)         | 0.87 (0.77-0.98) |
| Non-invasive ventilation                                  | 341/1267 (27%)        | 360/1143 (31%)         | 0.85 (0.75-0.97) |
| Invasive mechanical ventilation                           | 89/1267 (7%)          | 119/1143 (10%)         | 0.67 (0.52-0.88) |
| Successful cessation of invasive mechanical ventilation ‡ | 9/34 (26%)            | 12/36 (33%)            | 0.86 (0.36-2.03) |
| Renal replacement therapy §                               | 68/1616 (4%)          | 64/1498 (4%)           | 0.98 (0.71-1.38) |

# IRC-19 Italian response to COVID-19



## B.1.1.7, 20I/501Y.V1, VOC202012/01

| First detected by                                                     | United Kingdom                                                                                                    |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| First appearance                                                      | 20 September 2020                                                                                                 |
| Key mutations                                                         | H69/V70 deletion; Y144 deletion; N501Y; A570D; D614G; P681H; S106/G107/F108 deletion in NSP6                      |
| Transmissibility*                                                     | Increased (43%-82%), increased secondary attack rate (10% to 13%)                                                 |
| Severity*                                                             | Likely associated with an increased risk of hospitalisation and death compared to infection with non-VOC viruses. |
| Neutralization capacity*                                              | Slight reduction but overall neutralizing titers remained above the levels expected to confer protection          |
| Potential impacts on<br>vaccines*                                     | No significant impact on Moderna, Pfizer-BioNTech, and Oxford-<br>AstraZeneca                                     |
| Potential impacts on<br>diagnostics*                                  | S gene target failure. No impact on Ag RDTs observed                                                              |
| Countries reporting cases<br>(community transmission)<br>as of 23 Feb | 101 (45)                                                                                                          |



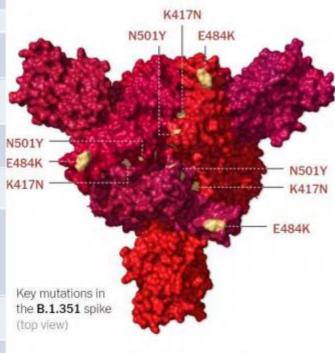
https://www.nytimes.com/interactive/2021/health/coro navirus-variant-tracker.html

## nature

#### Article | Published: 15 March 2021

This is an unedited manuscript that has been accepted for publication. Nature Research are providing this early version of the manuscript as a service to our authors and readers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

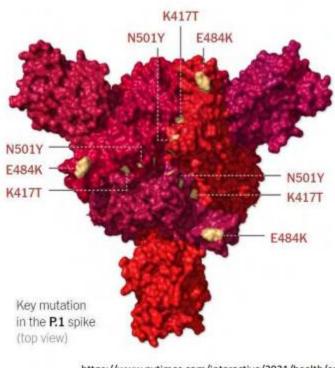
# Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7


Nicholas G. Davies ⊠, Christopher I. Jarvis, CMMID COVID-19 Working Group, W. John Edmunds, Nicholas P. Jewell, Karla Diaz-Ordaz & Ruth H. Keogh

B.1.1.7 infections **are associated with higher viral concentrations** on nasopharyngeal swabs, as measured by Ct values from PCR testing

Higher viral load could therefore be partly responsible for the observed increase in mortality; this could be assessed using a mediation analysis.

## B.1.351, 20H/501Y.V2, VOC202012/02


| First detected by                                      | South Africa                                                                                                                                                                                                                          |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First appearance                                       | Early August 2020                                                                                                                                                                                                                     |
| Key mutations                                          | L242/A243/L244 deletion; N501Y; D614G; E484K; K417N;<br>S106/G107/F108 deletion in NSP6                                                                                                                                               |
| Transmissibility*                                      | Increased [1.50 (95% CI: 1.20-2.13) times more transmissible than<br>previously circulating variants]                                                                                                                                 |
| Severity*                                              | No impact reported to date, no significant change in-hospital mortality                                                                                                                                                               |
| Neutralization capacity*                               | Decreased, suggesting potential increased risk of reinfection                                                                                                                                                                         |
| Potential impacts on<br>vaccines*                      | Reduction in the neutralizing activity, but impact on protection against disease or relative importance of other immune response mechanisms (e.g., T/B-cells), not fully known. Potentially decreased based on small, prelim studies. |
| Potential impacts on<br>diagnostics*                   | None reported to date.                                                                                                                                                                                                                |
| Countries reporting cases<br>(community transmissions) | 51 (13)                                                                                                                                                                                                                               |



https://www.nytimes.com/interactive/2021/health/coro navirus-variant-tracker.html

## B.1.128.P.1, 20J/501Y.V3

| First detected by                                                     | Brazil / Japan                                                 |
|-----------------------------------------------------------------------|----------------------------------------------------------------|
| First appearance                                                      | December 2020                                                  |
| Key mutations                                                         | N501Y; D614G; E484K; K417N; S106/G107/F108<br>deletion in NSP6 |
| Transmissibility*                                                     | Suggested to be increased                                      |
| Severity*                                                             | Under investigation, no impact reported to date                |
| Neutralization capacity*                                              | Potential decrease, small number of reinfections reported      |
| Potential impacts on vaccines*                                        | Under investigation                                            |
| Potential impacts on diagnostics*                                     | None reported to date                                          |
| Countries reporting cases<br>(Community transmission)<br>as of 23 Feb | 29 (3)                                                         |



https://www.nytimes.com/interactive/2021/health/coro navirus-variant-tracker.html

### A.23.1 2021-03-25

#### Description

International lineage with variants of biological significance F157L, V367F, Q613H and P681R, described fully in the preprent: Bugembe et al 2021. Q613H is predicted to be functionally equivalent to the D614G mutation that arose early in 2020.

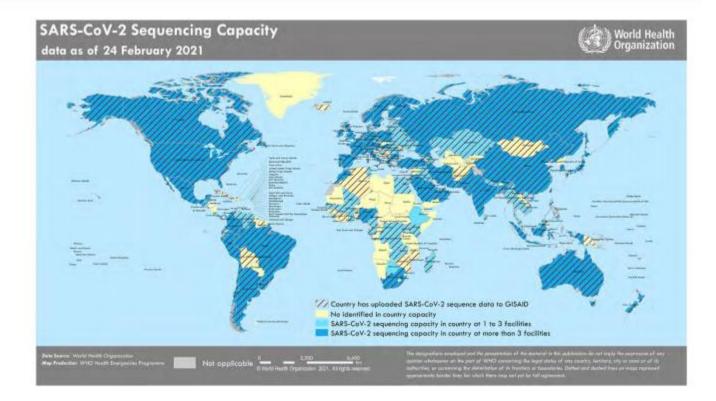
This webpage is generated using publically available sequence data from GISAID, shared by international sequencing efforts.

#### Table 1 | Summary of A.23.1 data

| Statistic                | Information                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Countries reported       | 2                                                                                                                                                                                                                                                                                                                                                                                   |
| Countries with sequences | 28                                                                                                                                                                                                                                                                                                                                                                                  |
| Sequence count           | 449                                                                                                                                                                                                                                                                                                                                                                                 |
| Countries                | United Kingdom 163, Rwanda 88, Uganda 48, Canada 44, Belgium 21, United States of America 19,<br>Cambodia 14, Latvia 8, Sweden 8, Denmark 6, Indonesia 5, Switzerland 3, Netherlands 3, Kenya 2,<br>Zimbabwe 2, India 2, Germany 2, South Africa 1, United Arab Emirates 1, Italy 1, New Zealand 1, Norway 1,<br>Australia 1, Mauritius 1, Vietnam 1, Israel 1, Ghana 1, Botswana 1 |
| First detected           | Uganda                                                                                                                                                                                                                                                                                                                                                                              |
| Earliest sample date     | 2020-10-21                                                                                                                                                                                                                                                                                                                                                                          |
| Defining SNPs            | aa:S:F157L<br>aa:S:V367F<br>aa:S:Q613H<br>aa:S:P681R                                                                                                                                                                                                                                                                                                                                |

### Infographic: How the Omicron variant compares δ В Αα SARS-CoV-2 Omicron Delta Gamma Alpha Beta B.1.1.529 B.1.617.2 P.1 B.1.1.7 B.1.351

# IRC-19 Italian response to COVID-19




### **Global SARS-CoV-2 Sequencing Capacities**

- Globally:
  - 523,778 WGS in GISAID
  - 134/194 (69%) countries submitted WGS
  - 5% of sequences with metadata

### GISRS:

- At least 61% GISRS labs submitted WGS to GISAID
  - 95 labs from 78 countries
- 32 GISRS labs support sequencing for other GISRS and non-GISRS labs



#### Emergenza Covid

### Non vaccinati a quota 10 milioni: ecco chi sono

Si tratta quasi del 20% della popolazione over 12. A preoccupare di più sono i 3,3 milioni di over 50: sono infatti le persone nella fascia di età a maggiore rischio di ospedalizzazione

di Andrea Gagliardi

2 settembre 2021

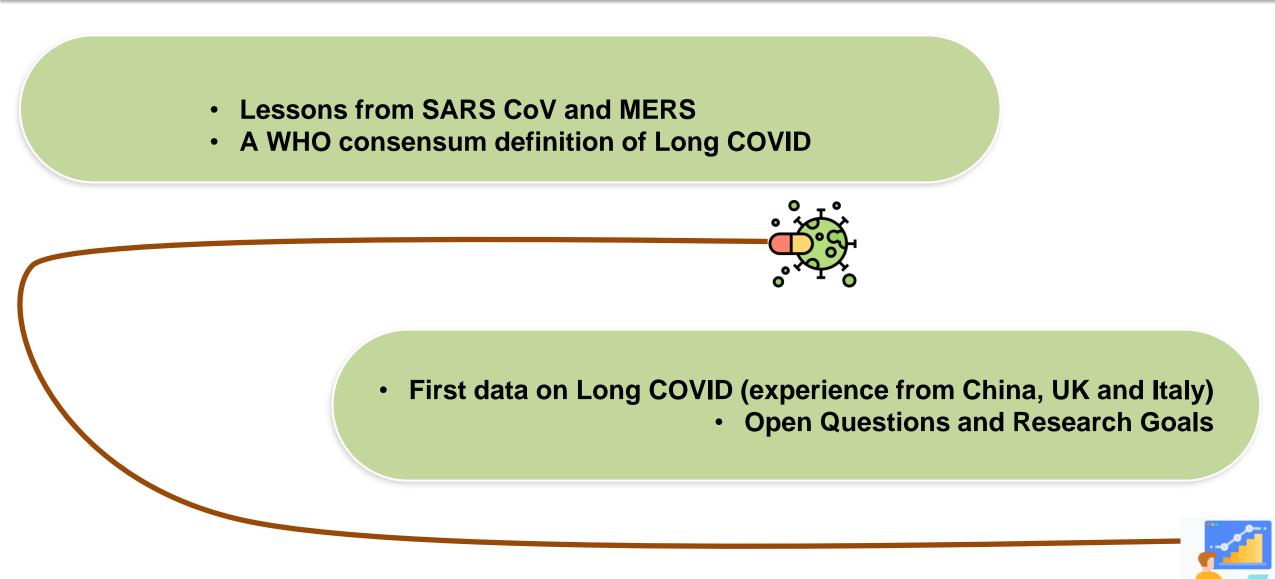
#### Ancora 3,3 milioni gli over 50 senza dose

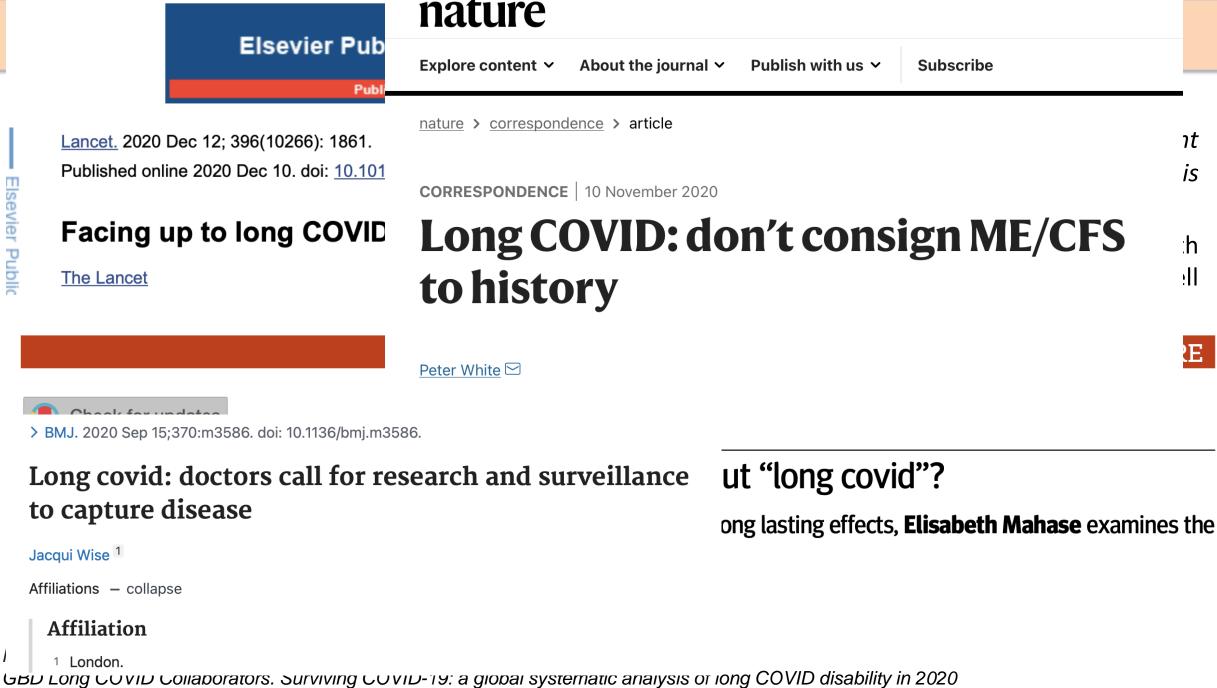
Dei 10,6 milioni di residenti in Italia senza nemmeno una dose di vaccino a preoccupare di più sono i 3,3 milioni di over 50. Si tratta infatti delle persone nella fascia di età a maggiore rischio di ospedalizzazione. Di questi, 1,68 milioni sono nella fascia 50-59 anni; 917mila in quella 60-69 anni; 517mila in quella 70-79 e 188mila over 80.

A livello solo numerico la fascia d'età con un maggior numero di persone senza dose è quella tra i 40-49 anni (2,1 milioni). Altri 1,9 milioni sono nella fascia 39-39; 1,4 milioni in quella 20-29 e 1,8 milioni in quella 12-19.

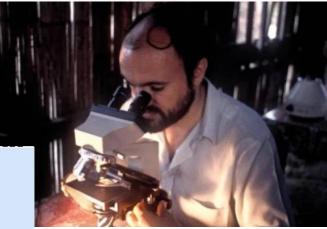








### Article

## **Attitudes towards Anti-SARS-CoV2 Vaccination among Healthcare Workers: Results from a National Survey in Italy**

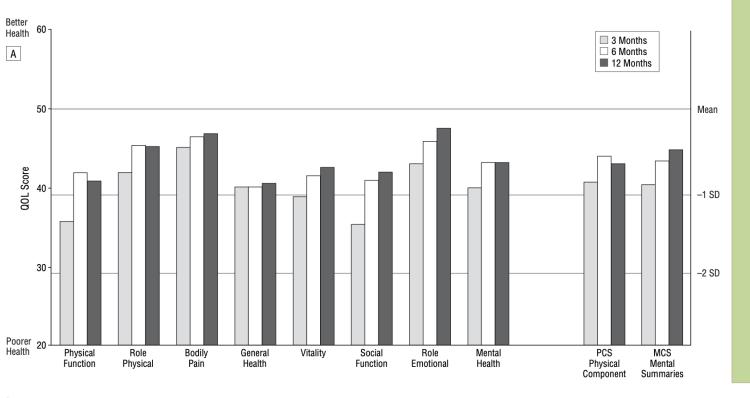

Francesco Di Gennaro <sup>1</sup>, Rita Murri <sup>2,3</sup>, Francesco Vladimiro Segala <sup>2,\*</sup>, Lorenzo Cerruti <sup>4</sup>, Amina Abdulle <sup>5</sup>, Annalisa Saracino <sup>1</sup>, Davide Fiore Bavaro <sup>1</sup> and Massimo Fantoni <sup>2,3</sup>

### OUTLINE





Public




SARS cases and deaths



Source: Lee SH. The SARS epidemic in Hong Kong--a human calamity in the 21st century. Methods Inf Med. 2005;44(2):293-8

## One-Year Outcomes and Health Care Utilization in Survivors of Severe Acute Respiratory Syndrome



Catherine M. Tansey, MSc; Marie Louie, MD; Mark Loeb, MD; et al

117 patients in Toronto who had contracted SARS, with interviews, physical examnation, chest radiography, a 6-minute walk test (6MWT), QoL measures and self-reporting of healthcare utilisation at 3, 6 and 12 months .
They showed that at 1 year, 18% of individuals had a reduced 6MWT due to shortness of breath and fatigue.

QoL measures (SF-36) showed a global reduction at 3 months, which had improved but not normalised at 1 year. Most patients returned to work after a 1–2 month period of reduced hours; however, at 1 year, 17% of patients hadn't returned and 9% had not returned to pre-SARS level of work.

#### **RESPIRATORY INFECTION**

Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors

D S Hui, G M Joynt, K T Wong, C D Gomersall, T S Li, G Antonio, F W Ko, M C Chan, D P Chan, M W Tong, T H Rainer, A T Ahuja, C S Cockram, J J Y Sung

| Outcome                             |                                       | Normal             | 3 months                                    | 6 months                                       | p value† |
|-------------------------------------|---------------------------------------|--------------------|---------------------------------------------|------------------------------------------------|----------|
| All survivors (n = 110*)            | Mean (SD)                             |                    | 464 (83)                                    | 502 (95)                                       | **       |
| Age group (years)<br>21–30 (n = 37) |                                       |                    |                                             |                                                | 0.01     |
| Men                                 | Mean (SD)<br>Mean difference (95% CI) | 651(105), (n=80)   | 487 (58), (n = 17)<br>−164 (−201 to −127)** | 549 (73), (n = 17)<br>−102 (−155 to −49)**     |          |
| Women                               | Mean (SD)<br>Mean difference (95% CI) | 600 (84), (n = 85) | 461 (75), (n = 20)<br>-139 (-180 to -98)**  | 493 (92), (n = 20)<br>−107 (−149 to −65)**     | 0.13     |
| 31-40 (n=40)                        |                                       |                    |                                             |                                                |          |
| Men                                 | Mean (SD)<br>Mean difference (95% CI) | 645 (93), (n=78)   | 513 (80), (n = 19)<br>−132 (−178 to −86)**  | 551 (98), (n = 19)<br>-94 (-141 to 46)**       | 0.06     |
| Women                               | Mean (SD)<br>Mean difference (95% CI) | 606 (86), (n=108)  | 476 (71), (n = 22)<br>-130 (-169 to 91)**   | 502 (53), (n = 22)<br>-101 (-139 to -63)**     | 0.11     |
| 41–50 (n = 21)                      |                                       |                    |                                             |                                                |          |
| Men                                 | Mean (SD)<br>Mean difference (95% CI) | 623 (80), (n=38)   | 477 (82), (n = 7)<br>−146 (−212 to −79)**   | 543 (112), (n = 7)<br>-80 (-151 to -9), p=0.03 | 0.09     |
| Women                               | Mean (SD)<br>Mean difference (95% CI) | 541 (67), (n=79)   | 404 (83), (n = 14)<br>-137 (-177 to -97)**  | 473 (76), (n = 14)<br>-68 (-107 to -29)**      | **       |
| 51–60 (n = 11)                      |                                       |                    |                                             |                                                |          |
| Men                                 | Mean (SD)<br>Mean difference (95% CI) | 588 (68), (n=23)   | 331 (83), (n = 2)<br>−257 (−361 to −152)**  | 405 (89), (n=2)<br>-183 (-288 to -78)**        | 0.18     |
| Women                               | Mean (SD)<br>Mean difference (95% CI) | 534 (89), (n = 33) | 399 (92), (n = 9)<br>−135 (−203 to −67)**   | 371 (99), (n = 9)<br>-163 (-232 to -94)**      | 0.67     |

Table 3 Six minute walking distance (6MWD) among SARS survivors (n = 110) at 3 and 6 months after the onset of illness

Thorax 2005;**60**:401–409. doi: 10.1136/thx.2004.030205

110 survivors with confirmed SARS were evaluated at the Prince of Wales Hospital, HK at the end of 3 and 6 months after symptom onset. The assessment included lung volumes (TLC, VC, RV, FRC), spirometry (FVC, FEV1), carbon monoxide transfer factor (TLCO adjusted for haemoglobin), inspiratory and expiratory respiratory muscle strength (Pimax and Pemax), 6 minute walk distance (6MWD), chest radiographs, and HRQoL by SF-36

Source: Hui DS, et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax. 2005 May;60(5):401-9.

#### **RESEARCH ARTICLE**

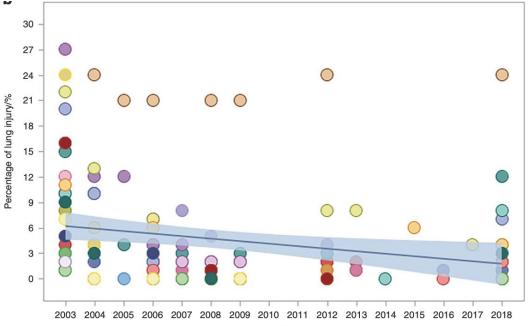
**Open Access** 

BMC Neurology

## Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study

#### Table 2 Sleep, Pain and Fatigue in SARS vs. FMS Subjects

| Sleep Parameter                              | SARS (n = 22)           | Fibromyalgia (n = 21)    | Significance |  |
|----------------------------------------------|-------------------------|--------------------------|--------------|--|
|                                              | Mean (SD)               | Mean (SD)                |              |  |
| Sleep onset latency ( min.)                  | 24.13 (21.63)           | 18.37 (35.39)            | n.s.         |  |
| Total sleep time (min)                       | 370.83 (83.84)          | 338.54 (76.26)           | n.s.         |  |
| Sleep Efficiency %                           | 77.44 (13.56)           | 79.34 (15.63)            | n.s.         |  |
| Stage 1%                                     | 9.11 (4.13)             | 9.76 (3.66)              | n.s.         |  |
| Stage 2%                                     | 60.22 (9.95)            | 54.61(5.41)              | 0.031        |  |
| Stage 3%                                     | 7.83 (6.36)             | 7.35 (3.08)              | n.s.         |  |
| Stage 4%                                     | 6.27 (5.80)             | 9.53 (6.18)              | n.s.         |  |
| REM onset Latency ( min.)                    | 136.79 (63.72)          | 87.26 (35.78)            | 0.004        |  |
| REM %                                        | 16.57 (5.94)            | 18.77 (4.81)             | n.s.         |  |
| Apnea/Hypopneas Index (no. per hr.of sleep)  | 4.70 (5.53)             | 3.29 (2.37)              | n.s.         |  |
| Periodic leg movements ( no.per hr of sleep) | 2.03 (5.64)             | 2.38 (3.81)              | n.s.         |  |
| Arousals per hr of sleep                     | 14.01 (7.59)            | 11.31 (5.31)             | n.s.         |  |
| CAP rate per hr of sleep                     | 71.64 ()(14.25)         | 70.39 (15.64)            | n.s.         |  |
| Alpha EEG sleep (1-5)                        | 3.00 (0.63)             | 3.50(0.61)               | 0.014        |  |
| Presleep Pain Presleep Fatigue (1-7)         | 6.24 (4.01) 4.57 (1.57) | 10.95 (5.74) 4.30 (1.08) | 0.005 n.s.   |  |
| Presleep Sleepiness (1-7)                    | 2.76 (1.14)             | 4.30 (1.08)              | 0.0001       |  |
| Post Sleep Pain (0-24)                       | 7.10 (3.81)             | 11.75 (6.45)             | 0.009        |  |
| Post Sleep Fatigue (1-7)                     | 4.30 (1.87)             | 4.60 (1.23)              | n.s.         |  |
| Post Sleep Sleepiness (1-7)                  | 3.45 (1.57)             | 3.90 (1.12)              | n.s.         |  |


Fatigue, myalgia, depression and poor sleep were seen in a cohort of 22 patients and a post-SARS syndrome, similar to fibromyalgia or post viral chronic fatigue syndrome, was suggested, possibly as a result of the psychological trauma or neurological involvement of SARS.

Source: Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011 Mar 24;11:37.

### ARTICLE OPEN

# Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study

Peixun Zhang<sup>1</sup>, Jia Li<sup>2</sup>, Huixin Liu<sup>3</sup>, Na Han<sup>4</sup>, Jiabao Ju<sup>5</sup>, Yuhui Kou<sup>1</sup>, Lei Chen<sup>6</sup>, Mengxi Jiang<sup>6</sup>, Feng Pan<sup>6</sup>, Yali Zheng<sup>2</sup>, Zhancheng Gao<sup>2</sup> and Baoguo Jiang<sup>1</sup>



The volume of femoral head necrosis decreased significantly from 2003 ( $38.83 \pm 21.01$ )% to 2005 ( $30.38 \pm 20.23$ )% (P = 0.000 2), then declined slowly from 2005 to 2013 ( $28.99 \pm$ 20.59)% and plateaued until 2018 ( $25.52 \pm 15.51$ )%. Pulmonary interstitial damage and functional decline caused by SARS mostly recovered, with a greater extent of recovery within **2 years after rehabilitation**. Femoral head necrosis induced by large doses of steroid pulse therapy in SARS patients was not progressive and was partially reversible.

Batawi et al. Health and Quality of Life Outcomes (2019) 17:101 https://doi.org/10.1186/s12955-019-1165-2

Health and Quality of Life Outcomes

#### RESEARCH

Open Acce

Quality of life reported by survivors after hospitalization for Middle East respiratory syndrome (MERS)



Batawi et al followed up 78 MERS survivors with questionnaires at 14 months post-hospitalisation in **Saudi Arabia.** Using the SF-36, QoL scores were reduced, with significantly lower scores in those who had had critical care admissions. Similar to SARS, **chronic fatigue** symptoms were described in **48%** of survivors at 1 year, reducing to 33% at 18 months. **88%** of MERS survivors were back at work, but the study didn't differentiate on how many were in part- or full-time work

#### SAGE Public Health Emergency Collection

Public Health Emergency COVID-19 Initiative

Workplace Health Saf. 2020 Mar 9 : 2165079919897693. Published online 2020 Mar 9. doi: <u>10.1177/2165079919897693</u> PMCID: PMC7201205 PMID: <u>32146875</u>

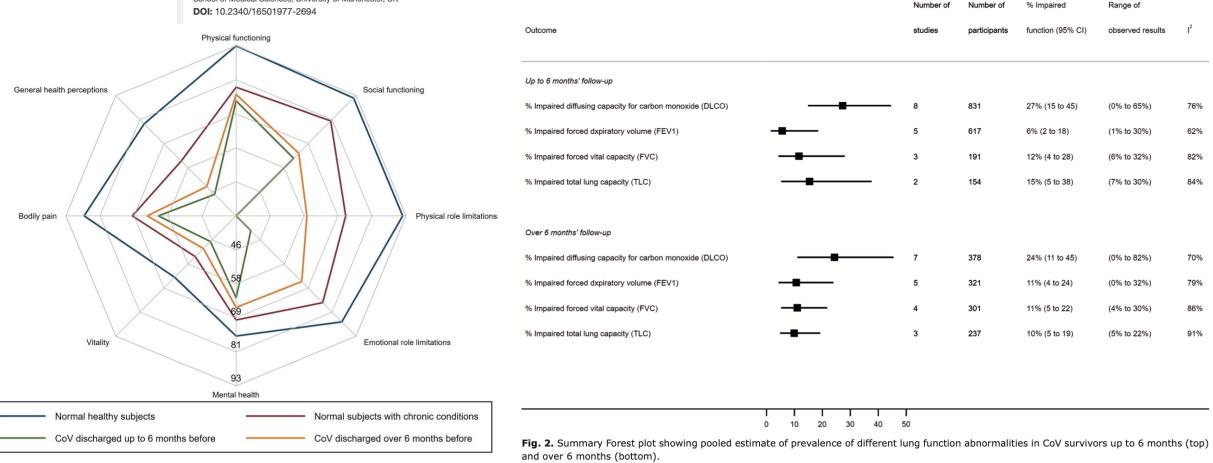
Assessing the Presence of Post-Traumatic Stress and Turnover Intention Among Nurses Post–Middle East Respiratory Syndrome Outbreak: The Importance of Supervisor Support

Heeja Jung,<sup>1</sup> Sun Young Jung,<sup>1</sup> Mi Hyang Lee,<sup>1</sup> and Mi Sun Kim<sup>2</sup>

As seen with SARS survivors, there are high levels of psychiatric disorders, including anxiety, depression and PTSD, notably worse in HCWs. The study showed that at 12 months **post-MERS 27% of survivors had depression and 42% had PTSD**, which improved at 18 months but was still a problem in 17% and 27% of survivors respectively. These effects were increased in **HCWs**, where around **57% of nurses** who treated patients with MERS suffered PTSD

Long-term clinical outcomes in survivors of severe acute respiratory syndrome (SARS) and Middle East

respiratory syndrome coronavirus (MERS) outbreaks after hospitalisation or ICU admission: A


Journal of **REHABILITATION MEDICI** OWNED BY THE NON-PROFIT ORGANIZATION FOUNDATION FOR REHABILITATION INFORMATION

Number of

% Impaired

systematic review and meta-analysis

Hassaan Ahmed, Kajal Patel, Darren C. Greenwood, Stephen Halpin, Penny Lewthwaite, Abayomi Salawu, Lorna Eyre, Andrew Breen, Rory O'Connor, Anthony Jones, Manoj Sivan School of Medical Sciences, University of Manchester, UK Number of



Source: Ahmed H, et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med. 2020 May 31;52(5):jrm00063.

Long-term clinical outcomes in survivors of severe acute respiratory syndrome (SARS) and Middle East

respiratory syndrome coronavirus (MERS) outbreaks after hospitalisation or ICU admission: A

systematic review and meta-analysis

Journal of REHABILITATION MEDICINE OWNED BY THE NON-PROFIT ORGANIZATION FOUNDATION FOR REHABILITATION INFORMATION

Hassaan Ahmed, Kajal Patel, Darren C. Greenwood, Stephen Halpin, Penny Lewthwaite, Abayomi Salawu, Lorna Eyre, Andrew Breen, Rory O'Connor, Anthony Jones, Manoj Sivan School of Medical Sciences, University of Manchester, UK DOI: 10.2340/16501977-2694

|                                                       |                            | Number of | Number of    | %Prevalence of     | Range of         |                |
|-------------------------------------------------------|----------------------------|-----------|--------------|--------------------|------------------|----------------|
| Outcome                                               |                            | studies   | participants | condition (95% CI) | observed results | 1 <sup>2</sup> |
| Over 6 months' follow-up                              |                            |           |              |                    |                  |                |
| % Prevalence of post-traumatic stress disorder (PTSD) |                            | 6         | 589          | 39% (31 to 47)     | (26% to 55%)     | 96%            |
| % Prevalence of depression                            | <b></b>                    | 4         | 465          | 33% (20 to 50)     | (9% to 48%)      | 88%            |
| % Prevalence of anxiety                               | _ <b>_</b>                 | 2         | 169          | 30% (10 to 61)     | (14% to 52%)     | 80%            |
|                                                       |                            |           |              |                    |                  |                |
|                                                       |                            |           |              |                    |                  |                |
|                                                       | I I I I I<br>0 20 40 60 80 | I<br>100  |              |                    |                  |                |

Fig. 3. Summary Forest plot showing pooled estimate of prevalence of different psychological conditions in CoV survivors over 6 months

Source: Ahmed H, et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med. 2020 May 31;52(5):jrm00063.

### WHAT IS LONG COVID? DEFINITION MATTER

A clinical case definition of post COVID-19 condition by a Delphi consensus

### 6 October 2021





WHO has developed a clinical case definition of post COVID-19 condition by Delphi methodology that includes 12 domains, available for use in all settings. This first version was developed by **patients**, **researchers** and others, representing all WHO regions, with the understanding that the definition may change as new evidence emerges and our understanding of the consequences of COVID-19 continues to evolve.

### Post COVID-19 condition occurs in individuals:

- with a history of probable or confirmed SARS CoV-2 infection,
- usually 3 months from the onset of COVID-19 with symptoms and
- that last for at least 2 months
- cannot be explained by an alternative diagnosis.

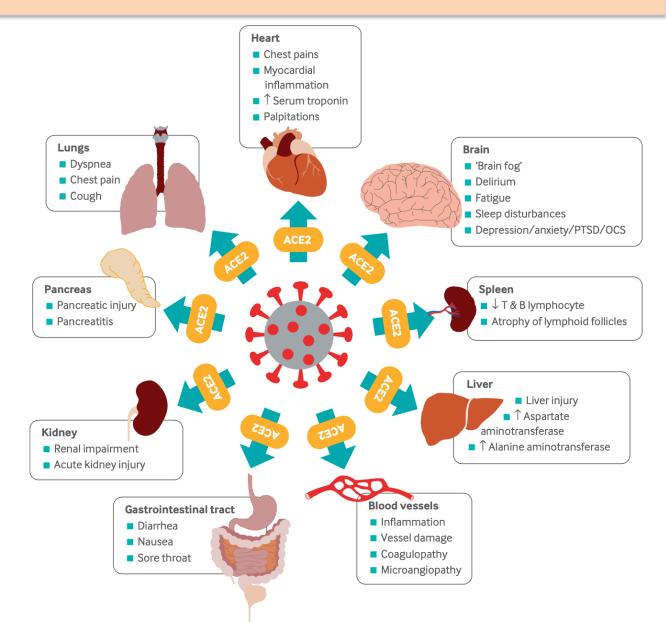
Common symptoms include fatigue, shortness of breath, cognitive dysfunction but also others and generally have an impact on everyday functioning. Symptoms may be new onset following initial recovery from an acute COVID-19 episode or persist from the initial illness. Symptoms may also fluctuate or relapse over time.

### WHAT IS LONG COVID? DEFINITION MATTER

EDITORIALS

| <b>NICE</b> National Institute for<br>Health and Care Excellence | COVID-19 rapid guideline: managing the long-term effects of COV<br>v1.7 published on 11/23/21                                                                                         | Check for updates           Image: Check for updates           1 Academic Department of<br>Rehabilitation Medicine, Leeds<br>Institute of Rheumatic and<br>Musculoskeletal Medicine, University<br>of Leeds, Leeds, UK         NICE guideline on long covid           Research must be done urgently to fill the many gaps in this new "living guideline"<br>Manoj Sivan, <sup>1, 2</sup> Sharon Taylor <sup>3, 4</sup> |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How to use this guideline                                        | Consensus recommendation                                                                                                                                                              | Standardised termsOne stop multidisciplinary clinics are recommended,<br>led by a doctor with relevant specialist skills and<br>experience. NHS England has also emphasised the<br>importance of multidisciplinary assessment and                                                                                                                                                                                       |
| Identification                                                   | Use the following clinical case definitions to                                                                                                                                        | symptoms that develop during of following an infection consistent with covid-19 and which continue avoid multiple referrals to different specialists 5                                                                                                                                                                                                                                                                  |
| Assessment                                                       | Acute COVID-19                                                                                                                                                                        | for more than four weeks and are not explained by<br>an alternative diagnosis." <sup>4</sup> Given that we are<br>beginning to underlying                                                                                                                                                                                                                                                                               |
| Investigations and referral                                      | Signs and symptoms of COVID-19 for up to                                                                                                                                              | $\begin{array}{c} \text{Respiratory physicians, calculologists, hetrologists, }\\ \text{SABS CoV} = 67 \text{ it might have been better to define it} \\ \end{array}$                                                                                                                                                                                                                                                   |
| Planning care                                                    | Ongoing symptomatic COVID-19                                                                                                                                                          | as "signs and symptoms that continue for more than<br>four weeks and can be attributed to covid-19                                                                                                                                                                                                                                                                                                                      |
| Management                                                       | Signs and symptoms of COVID-19 from 4                                                                                                                                                 | infection." This definition would include all the<br>post-acute medical complications of covid-19 under<br>one unified definition rather than making long covid                                                                                                                                                                                                                                                         |
| Follow up, monitoring and discharg                               | Post-COVID-19 syndrome                                                                                                                                                                | a vague diagnosis of exclusion. Shared decision making is appropriately emphasised                                                                                                                                                                                                                                                                                                                                      |
| Sharing information and continuity care                          | of<br>Signs and symptoms that develop during of<br>12 weeks and are not explained by an alte<br>overlapping, which can fluctuate and chang<br>may be considered before 12 weeks while | syndrome" from 12 weeks after infection. But no<br>evidence exists of any particular physiological<br>changes (that predict chronicity) at 12 weeks, so it<br>would be preferable to use the term long covid forpersonalised management plans and care plans. The<br>guidance lacks detail on potentially helpful<br>rehabilitation interventions such as breathing<br>techniques, psychological interventions (such as |
| Service organisation                                             |                                                                                                                                                                                       | symptoms of any duration beyond four weeks, as is<br>strongly advocated by people with lived experience                                                                                                                                                                                                                                                                                                                 |
| Common symptoms                                                  | In addition to the clinical case definitions, t                                                                                                                                       | and used subjects a summentary with a sum                                                                                                                                                                                                                                                                                                                                                                               |
| Recommendations for research                                     | continue or develop after acute COVID-19.<br>post-COVID-19 syndrome (12 weeks or me                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Equality considerations                                          | ~                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                         |

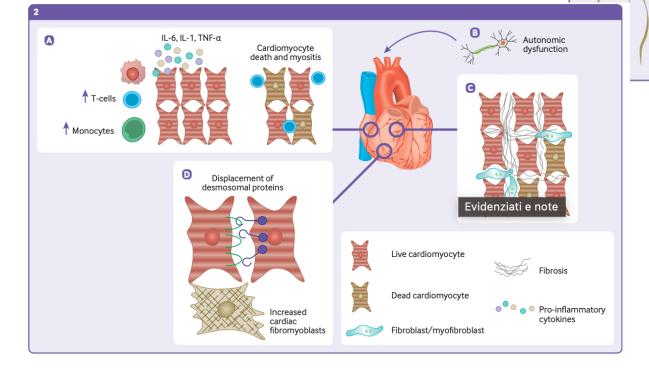
Codes have been developed that align with this case definition. See the practical info section for further details.

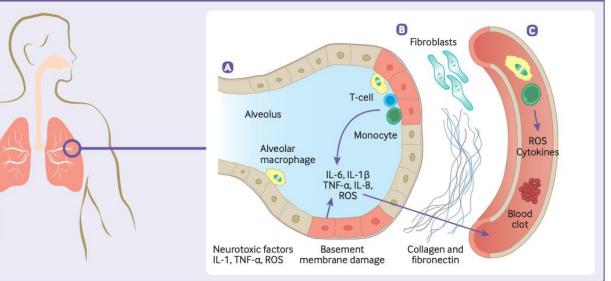

Methods and evidence reviews

 $\sim$ 

### PATHOPHYSIOLOGY

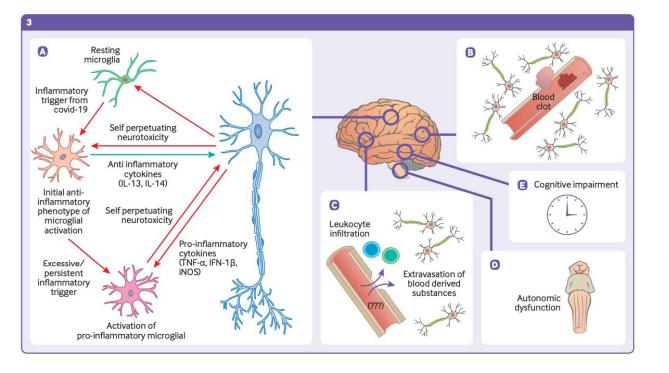
The predominant pathophysiologic mechanisms of acute COVID- 19 include the following: direct/umdirect viral toxicity; endothelial damage and microvascular injury; immune system dysregulation and stimulation of a hyperinflammatory state; hypercoagulability with resultant in situ thrombosis and macrothrombosis; and maladaptation of the angiotensin-converting enzyme 2 (ACE2) pathway


Multi-organ complications of covid-19 and long covid. The SARS-CoV-2 virus gains entry into the cells of multiple organs via the ACE2 receptor. Once these cells have been invaded, the virus can cause a multitude of damage ultimately leading to numerous persistent symptoms, some of which are outlined here

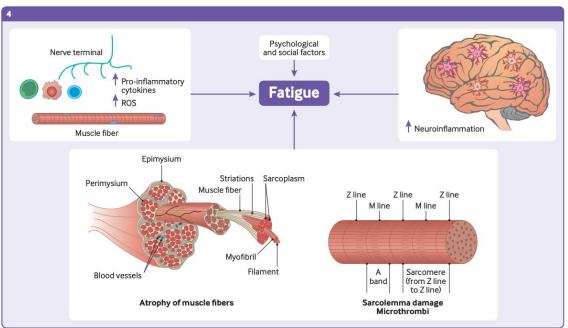



Crook H et al. Long covid—mechanisms, risk factors, and management BMJ 2021; 374 :n1648

### LONG TERM SEQUALAE

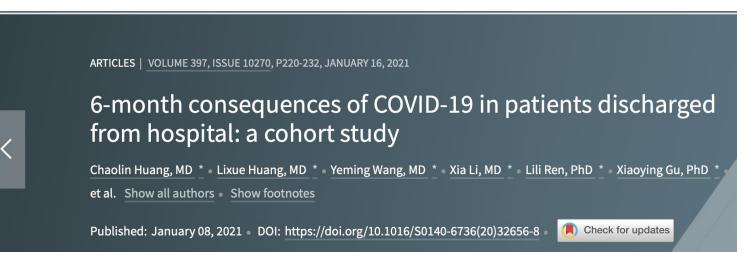

In the alveoli of the lungs, chronic inflammation results in the sustained production of pro-inflammatory cytokines and reactive oxygen species (ROS) which are released into the surrounding tissue and bloodstream






In the heart, chronic inflammation of cardiomyocytes can result in myositis and cause cardiomyocytes death. Furthermore, dysfunction of the afferent autonomic nervous system can cause complications such as postural orthostatic tachycardia syndrome

### LONG TERM SEQUALAE



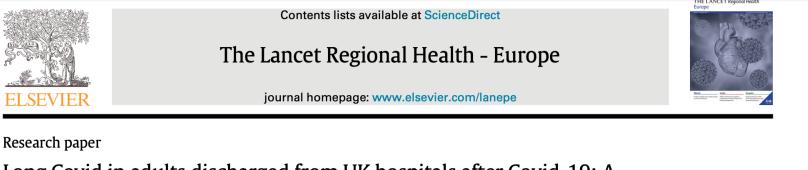

Chronic inflammation in the brain, as well as at the neuromuscular junctions, may result in long term fatigue. In skeletal muscle, sarcolemma damage and fiber atrophy and damage may play a role in fatigue, as might a number of psychological and social factors In the CNS the long term immune response activates glial. Hyperinflammatory and hypercoagulable pathological permeability, cognitive impairment. Blood-brain barrier damage and dysregulation results in pathological permeability. The effects of long covid in the brain can lead to cognitive impairment



Crook H et al. Long covid—mechanisms, risk factors, and management BMJ 2021; 374 :n1648

### THE LANCET

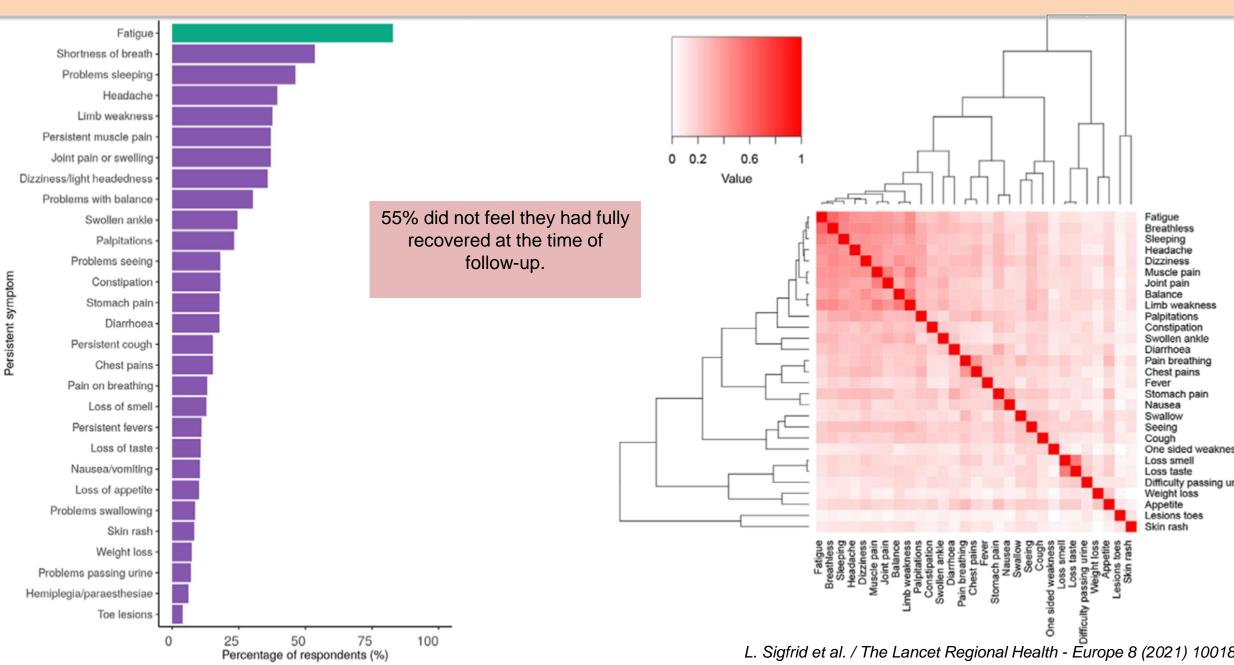



→ ambidirectional cohort study of patients with confirmed COVID-19 discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7, 2020, and May 29, 2020 -- follow-up from June 16, to Sept 3, 2020

- → 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded
- → median age of 57·(IQR 47–65) years and 897 (52%) were men.
- $\rightarrow$  median follow-up time after symptom onset was 186 (175–199) days.
- → Fatigue or muscle weakness (63%, 1038 of 1655) and sleep difficulties (26%, 437 of 1655) were the most common symptoms.
- $\rightarrow$  Anxiety or depression was reported among **23%** (367 of 1617) of patients.
- → The proportions of median 6-min walking distance less than the lower limit of the normal range were 24% for those at severity scale 3, 22% for severity scale 4, and 29% for severity scale 5–6

Source: Huang C, et al 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021 Jan

| A                          |                     |    | OR (95% CI)          | p value |                               | β (95% CI)              | p value |
|----------------------------|---------------------|----|----------------------|---------|-------------------------------|-------------------------|---------|
| Age                        |                     |    | 1·27 (1·02 to 1·60)  | 0.035   | -                             | -4·00 (-6·64 to -1·37)  | 0.0032  |
| Sex                        |                     |    |                      |         |                               |                         |         |
| Men                        |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| Women                      |                     |    | 2·22 (1·24 to 3·98)  | 0.0071  |                               | -6·69 (-13·7 to 0·35)   | 0.06    |
| Cigarette smoking          |                     |    |                      |         |                               |                         |         |
| Never–smoker               |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| Current smoker             |                     |    | 2·34 (0·80 to 6·80)  | 0.12    |                               | 13·05 (–1·53 to 27·62)  | 0.08    |
| Former smoker              |                     |    | 2·52 (0·61 to 10·39) | 0.20    |                               | –12·10 (–29·40 to 5·24) | 0.17    |
| Education                  |                     |    |                      |         |                               |                         |         |
| Middle school or lower     |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| College or higher          | -                   |    | 1·57 (0·87 to 2·82)  | 0.14    |                               | 3·44 (-4·09 to 10·96)   | 0.37    |
| Comorbidity                |                     |    |                      |         |                               |                         |         |
| No                         |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| Yes                        |                     |    | 1·12 (0·63 to 1·99)  | 0.71    | <b>_</b>                      | -1·18 (-8·33 to 5·98)   | 0.75    |
| Disease severity           |                     |    |                      |         |                               |                         |         |
| Scale 3                    |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| Scale 4                    |                     |    | 1.61 (0.80 to 3.25)  | 0.18    |                               | 8.87 (0.87 to 16.86)    | 0.031   |
| Scale 5–6                  |                     | _  | 4.60 (1.85 to 11.48) | 0.0011  |                               | 18.00 (7.06 to 28.93)   | 0.0014  |
| Corticosteroids            |                     |    |                      |         |                               |                         |         |
| No                         |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| Yes                        | -                   |    | 1.18 (0.60 to 2.34)  | 0.63    | <b>_</b>                      | -4·73 (-13·4 to 3·99)   | 0.29    |
| Antiviral                  |                     |    |                      |         |                               |                         |         |
| No                         |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| Yes                        | <b>.</b>            |    | 0.94 (0.55 to 1.60)  | 0.81    | <b></b>                       | 0.59 (-5.86 to 7.03)    | 0.86    |
| Intravenous immuoglobulins |                     |    |                      |         |                               |                         |         |
| No                         |                     |    | 1 (ref)              |         |                               | 1 (ref)                 |         |
| Yes                        | <b>_</b>            |    | 0.94 (0.49 to 1.79)  | 0.85    |                               | 1·02 (-7·41 to 9·44)    | 0.81    |
|                            |                     |    |                      | _       |                               |                         |         |
|                            | o 5 10              | 15 |                      |         | -30 -15 0 15 30               |                         |         |
|                            | Diffusion impairmer | nt |                      |         | Percentage change of CT score |                         |         |


Source: Huang C, et al 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021 Jan



Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol

- → The ISARIC WHO Clinical Characterisation Protocol (CCP) first developed by international consensus in 2012 to respond to any emerging or re-emerging pathogen of public health interest
- → Patients >18 years, admitted to hospital between 17th January to 5th October 2020 with confirmed or highly suspected SARS-CoV-2 infection at 31 centres
- → The primary outcome was self-reported recovery at 3 to 12 months following initial Covid-19 symptoms.
- → Secondary outcomes included persistent or new symptoms, new or worsened disability assessed using the Washington Disability Group (WG) Short Form, breathlessness measured using the Medical Research Council (MRC) dyspnoea scale, fatigue measured on a 1 to 10 visual analogue scale (VAS) where zero is no fatigue and ten is worst possible fatigue, and quality of life using the EuroQol! EQ5D-5L instrument.
- $\rightarrow$  327 participants

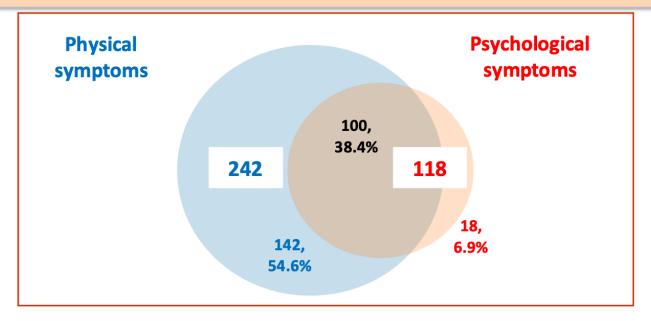
Sigfrid L, et al ISARIC4C investigators. Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg Health Eur. 2021 Sep;8:100186.





#### Table 3

Multilevel regression models for secondary outcomes of new or persistent symptoms, change in MRC dyspnoea scale, fatigue, EQ5D-5L summary index change and Washington Short Set new or worse disability.


| Explanatory variable | 2                                                                                      | New or persistent<br>symptoms: OR (95%<br>Confidence Interval) | Change in MRC<br>Dyspnoea: OR (95%<br>Confidence Interval) | Fatigue level:<br>Coefficient (95%<br>Confidence Interval) | EQ5D-5L summary<br>index change:<br>Coefficient (95%<br>Confidence Interval) | Washington Short<br>Set new or worse<br>disability: OR (95%<br>Confidence Interval) |
|----------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Sex at Birth by Age  | Male   Under 50<br>Male   50 to 69                                                     | -<br>0·82 (0·21-3·30,<br>p=0·783)                              | -<br>2·20 (0·89-5·45,<br>p=0·088)                          | -<br>0·44 (-0·56 to 1·44,<br>p=0·194)                      | -<br>-0.05 (-0.11 to 0.02,<br>p=0.093)                                       | -<br>1.66 (0.51-5.42,<br>p=0.401)                                                   |
|                      | Male   Over 70                                                                         | 0.74 (0.14-3.83)<br>p=0.720)                                   | p=0.088)<br>2.59 (0.84-7.95,<br>p=0.096)                   | 0.38 (-0.84  to  1.60, p=0.272)                            | -0.04(-0.12  to  0.04),<br>p=0.184)                                          | p=0.401)<br>2.08 (0.55-7.96,<br>p=0.283)                                            |
|                      | Female   Under 50                                                                      | 2.75 (0.26-28.92,<br>p=0.400)                                  | 7.15 (2.24-22.83,<br>p=0.001)                              | 2.06 (0.81 to 3.31,<br>p=0.001)                            | -0.19 (-0.27 to<br>-0.11, p<0.001)                                           | 4·22 (1·12-15·94,<br>p=0·034)                                                       |
|                      | Female   50 to 69                                                                      | 2.10 (0.39-11.37,<br>p=0.389)                                  | 6·18 (2·28-16·78,<br>p<0·001)                              | 1.20 (0.15 to 2.24,<br>p=0.012)                            | -0.10 (-0.17 to<br>-0.03, p=0.003)                                           | 2·70 (0·81-9·03,<br>p=0·107)                                                        |
|                      | Female   Over 70                                                                       | 1·21 (0·11-13·89,<br>p=0·876)                                  | 0.62 (0.12-3.11,<br>p=0.562)                               | 0·29 (-1·33 to 1·92,<br>p=0·362)                           | -0.06 (-0.17 to 0.04,<br>p=0.109)                                            | 1·88 (0·36-9·82,<br>p=0·452)                                                        |
| Any comorbidity      | No comorbidities                                                                       | -                                                              | -                                                          | -                                                          | -                                                                            | -                                                                                   |
|                      | One or more<br>comorbidities                                                           | 2·28 (0·92-5·65,<br>p=0·076)                                   | 0.74 (0·42-1·31,<br>p=0·304)                               | 0.95 (0.35 to 1.55,<br>p=0.001)                            | -0.02 (-0.06 to 0.02,<br>p=0.139)                                            | 2·96 (1·57-5·57,<br>p=0·001)                                                        |
| Severity             | Scale 3 (did not<br>receive supple-<br>mental oxygen)                                  | -                                                              | -                                                          | -                                                          | -                                                                            | -                                                                                   |
|                      | Scale 4 (received<br>supplemental<br>oxygen)                                           | 0.61 (0.15-2.43,<br>p=0.483)                                   | 0·51 (0·24-1·07,<br>p=0·076)                               | -0·26 (-1·06 to 0·55,<br>p=0·266)                          | 0.04 (-0.01 to 0.09,<br>p=0.077)                                             | 1·11 (0·51-2·40,<br>p=0·798)                                                        |
|                      | Scale 5 (received<br>HFNC or NIV)                                                      | 0.32 (0.07-1.46, p=0.142)                                      | 0·89 (0·36-2·21,<br>p=0·794)                               | -0.20(-1.22  to  0.83, p=0.354)                            | 0.01 (-0.06  to  0.08, p=0.371)                                              | 1·32 (0·49-3·51,<br>p=0·583)                                                        |
|                      | Scale 6 or 7<br>(received invasive<br>mechanical venti-<br>lation or critical<br>care) | 1.18 (0.24-5.95,<br>p=0.838)                                   | 1.82 (0.79-4.22,<br>p=0.162)                               | -0.18 (-1.09 to 0.74,<br>p=0.354)                          | -0.05 (-0.11 to 0.02,<br>p=0.073)                                            | 1·48 (0·63-3·52,<br>p=0·370)                                                        |



Original article

Female gender is associated with long COVID syndrome: a prospective cohort study

- $\rightarrow$  single-centre prospective cohort study conducted at San Paolo Hospital in Milan, Italy.
- → HADS was intended to measure anxiety and depression symptoms, whereas IES-R was used as a screening tool of PTSD. A total HADS score higher than 8 denoted considerable symptoms of anxiety and depression, while a IES-R score above 33 was interpreted as highly suggestive for PTSD.
- $\rightarrow$  Long COVID was defined as the persistence of physical and/or psychological symptoms at follow-up
- → Adult patients who were evaluated at the post- COVID outpatient clinic, which had been set up in April 2020, between 15 April 2020 and 15 December 2020.
- $\rightarrow$  The study includes a total of **377** patients
- → The follow-up examination was done at a median of 102 (IQR 86e126) days from acute symptom onset, a median of 79 (IQR 69e102) days from clinical recovery and a median of 56 (IQR 47e74) days from virological clearance.



 $\rightarrow$  Long COVID was observed in **69%** patients; 81.7% females presented long COVID syndrome. Within long COVID patients:

- → 37.3% participants had only one persisting symptom, 32.3% had two persisting symptoms and 30.4% had three or more persisting symptoms.
- → 55% reported ongoing physical symptoms only, 38% both physical and psychological symptoms, 7% presented psychological distress solely at follow-up. Physical and psychological manifestations were similarly represented in both genders
- → Most common **physical symptoms**: fatigue 39.5%, exertional dyspnoea 28.9%, musculoskeletal pain 21.2%, "brain fog" 20.2%
- → As far as psychological sequelae: manifestations of **anxiety 18.8%**, depression symptoms **10.6%**
- $\rightarrow$  31% of cases the IES-R score resulted pathological, possibly suggesting the presence of PTSD
- → Women were characterized by a higher proportion of most physical symptoms and all psychological symptoms than men

#### Table 4

Factors associated with long COVID syndrome by fitting univariable and multivariable logistic regression analyses

| Parameters                                                       | OR (95%CI)        | р       | AOR (95%CI)       | р       |
|------------------------------------------------------------------|-------------------|---------|-------------------|---------|
| Gender:                                                          |                   |         |                   |         |
| Male                                                             | 1                 |         | 1                 |         |
| Female                                                           | 2.78 (1.68-4.62)  | <0.0001 | 3.32 (1.78–6.17)  | <0.0001 |
| Age, 10 years older                                              | 1.03 (1.01–1.04)  | 0.001   | 1.03 (1.01-1.05)  | 0.01    |
| O <sub>2</sub> therapy:                                          |                   |         |                   |         |
| No O <sub>2</sub>                                                | 1                 |         | 1                 |         |
| O <sub>2</sub> therapy low—high flows                            | 0.67 (0.38-1.19)  | 0.17    | 0.39 (0.19-0.82)  | 0.44    |
| CPAP/NIV/IOT                                                     | 0.97 (0.55–1.71)  | 0.91    | 0.67 (0.29–1.55)  | 0.85    |
| LOS, each day more                                               | 1.01 (0.99-1.03)  | 0.28    | 0.998 (0.97-1.03) | 0.92    |
| Comorbidities:                                                   |                   |         |                   |         |
| No                                                               | 1                 |         | 1                 |         |
| Yes                                                              | 1.35 (0.86–2.11)  | 0.19    | 1.05 (0.597-1.84) | 0.87    |
| Smoking:                                                         |                   |         |                   |         |
| Active                                                           | 1                 |         | 1                 |         |
| Unknown                                                          | 0.13 (0.03–0.52)  | 0.004   | 0.16 (0.04–0.75)  | 0.31    |
| Never                                                            | 0.61 (0.37-0.997) | 0.05    | 0.56 (0.31-1.01)  | 0.41    |
| Former                                                           | 0.36 (0.14-0.96)  | 0.04    | 0.19 (0.06-0.62)  | 0.002   |
| BMI:                                                             |                   |         |                   |         |
| ≥30                                                              | 1                 |         | 1                 |         |
| Unknown                                                          | 0.29 (0.096-0.91) | 0.03    | 0.13 (0.30–0.53)  | 0.03    |
| <30                                                              | 0.55 (2.27-5.06)  | 0.02    | 0.55 (0.31-0.98)  | 0.28    |
| Time from symptoms onset to virological clearance, each day more | 1.01 (0.99–1.02)  | 0.64    | 0.99 (0.98-1.01)  | 0.47    |



L'epidemiologia per la sanità pubblica Istituto Superiore di Sanità

#### Indice A-Z dei contenuti

Cerca.. Q

Autori

### Coronavirus

#### Home | EpiCentro

| 📌 Coronavirus                    |   |
|----------------------------------|---|
| Informazioni generali            | + |
| News                             | + |
| Nuovo coronavirus SARS-<br>CoV-2 |   |
| In Italia                        | + |
| Focus                            |   |

## Long COVID: una nuova sfida per la medicina di genere?

Alcune persone che hanno avuto una forma di malattia COVID-19 da severa a moderata o lieve possono soffrire di sintomi variabili e debilitanti per molti mesi dopo l'infezione iniziale. Una situazione che, seppur priva di definizione esatta, viene chiamata "*Long* COVID".

Negli adulti la condizione presenta delle somiglianze con le sindromi post-infettive che hanno seguito i focolai di Chikungunya ed Ebola ed è caratterizzata da sequele a lungo termine, persistenti per più di due mesi dopo il tipico periodo di convalescenza da COVID-19. Tra i sintomi:

| Differenze di genere                                        |
|-------------------------------------------------------------|
| <u>Importanza dei dati</u><br><u>disaggregati per sesso</u> |
| Possibili meccanismi                                        |
| <u>i Caregiver familiari</u>                                |

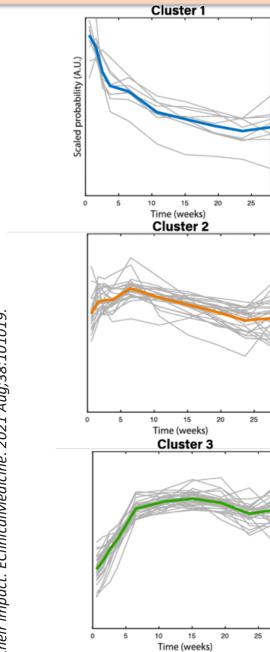
fy



Research paper

Characterizing long COVID in an international cohort: 7 months of symptoms and their impact

```
Hannah E. Davis<sup>a,1</sup>, Gina S. Assaf<sup>a,1</sup>, Lisa McCorkell<sup>a,1</sup>, Hannah Wei<sup>a,1</sup>, Ryan J. Low<sup>a,b,1</sup>,
Yochai Re'em<sup>a,c,1</sup>, Signe Redfield<sup>a</sup>, Jared P. Austin<sup>a,d</sup>, Athena Akrami<sup>a,b,1,*</sup>
```


→ **Online survey** of people with suspected and confirmed COVID-19, distributed via COVID-19 support groups (e.g. Body Politic, Long COVID Support Group, Long Haul COVID Fighters) and social media (e.g. Twitter, Facebook).

→ Data collected from September 6, 2020 to November 25, 2020.

- → 3762 participants with confirmed or suspected COVID-19, from 56 countries, with illness lasting over 28 days and onset prior to June 2020.
- → the prevalence of 203 symptoms in 10 organ systems and traced 66 symptoms over seven months was estimated. The impact on life, work, and return to baseline health was measured.

## Main findings

- $\rightarrow$  For >91% of respondents the time to recovery exceeded 35 weeks.
- → During their illness, participants experienced an average of 56 symptoms, across an average of 9.1 organ systems.
- Symptoms varied in their prevalence over time, three symptom clusters were identified each with a characteristic temporal profile.
- → 85.9% of participants experienced relapses, primarily triggered by exercise, physical or mental activity, and stress.
- → 1700 respondents (45.2%) required a reduced work schedule compared to pre-illness, and an additional 839 (22.3%) were not working at the time of survey due to illness.
- $\rightarrow$  Cognitive dysfunction or memory issues were common across all age groups (~88%).
- → Except for loss of smell and taste, the prevalence and trajectory of all symptoms were similar between groups with confirmed and suspected COVID-19



|                                                 | CLUSTER 1                                                     | CLUSTER 2                                                                                                                                                                                                                                                                                                                                                             | CLUSTER 3                                                                                                                                                                                                                          |
|-------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cardiovascular                                  |                                                               | 25. Fainting<br>19. Pain/burning in chest<br>33. Tachycardia                                                                                                                                                                                                                                                                                                          | 49. Bradycardia<br>38. Palpitations<br>64. Visibly inflamed/bulging veins                                                                                                                                                          |
| Dermatologic                                    |                                                               | 30. COVID toe                                                                                                                                                                                                                                                                                                                                                         | 53. Dermatographia<br>55. Other Skin and Allergy<br>42. Peeling skin<br>54. Petechiae<br>44. Skin rashes                                                                                                                           |
| Gastrointestinal                                | 9. Diarrhea<br>2. Loss of Appetite<br>4. Vomiting             | 26. Abdominal pain<br>18. Nausea                                                                                                                                                                                                                                                                                                                                      | 45. Constipation<br>43. Gastroesophageal reflux                                                                                                                                                                                    |
| HEENT<br>(Head, ears,<br>eyes, nose,<br>throat) | 7. Runny nose<br>6. Sore Throat                               |                                                                                                                                                                                                                                                                                                                                                                       | 48. Hearing loss<br>51. Other ear/hearing issues<br>39. Other eye symptoms<br>58. Tinnitus<br>59. Vision symptoms                                                                                                                  |
| Immunologic/<br>Autoimmune                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                       | 65. New allergies<br>63. New anaphylaxis reaction                                                                                                                                                                                  |
| Musculoskeletal                                 |                                                               | 32. Bone ache or burning<br>21. Muscle aches<br>15. Tightness of Chest                                                                                                                                                                                                                                                                                                | 37. Joint pain<br>40. Muscle spasms                                                                                                                                                                                                |
| Neuropsychiatric                                |                                                               | <ul> <li>20. Acute (sudden) confusion/disorientation</li> <li>12. Changes to sense of smell and taste</li> <li>22. Dizzines, unsteadiness or balance issues</li> <li>31. Hallucinations</li> <li>29. Headaches and related symptoms</li> <li>35. Insomnia</li> <li>27. Other sleeping symptoms</li> <li>34. Sleep apnea</li> <li>36. Slurring words/speech</li> </ul> | <ul> <li>41. All sensorimotor symptoms</li> <li>47. Brain fog</li> <li>61. Memory issues</li> <li>50. Neuralgia (nerve pain)</li> <li>62. Speech/language issues</li> <li>52. Tremors</li> <li>56. Vibrating Sensations</li> </ul> |
| Pulmonary/<br>Respiratory                       | 3. Dry cough<br>5. Rattling of breath                         | <ul> <li>14. Breathing difficulty (normal O2 saturation level)</li> <li>17. Cough with mucus production</li> <li>10. Coughing up Blood</li> <li>24. Other Respiratory and Sinus</li> <li>16. Shortness of Breath</li> <li>13. Sneezing</li> </ul>                                                                                                                     |                                                                                                                                                                                                                                    |
| Reproductive/<br>Genitourinary/<br>Endocrine    |                                                               |                                                                                                                                                                                                                                                                                                                                                                       | 60. All menstrual/period issues<br>46. Bladder control issues                                                                                                                                                                      |
| Systemic                                        | 8. Elevated temperature (98.8-100.4F)<br>1. Fever (>= 100.4F) | 11. Chills/flushing/sweats<br>28. Fatigue<br>23. Low temperature                                                                                                                                                                                                                                                                                                      | 39. Other temperature issues 57. Post Exertional Malaise                                                                                                                                                                           |

Since being infected with SARS-CoV-2

- 2.8% (95% confidence interval 2.3% to 3.3%) of respondents reported experiencing varicella zoster reactivation,
- 6.9% reported current/recent Epstein Barr virus (EBV) infection,
- 1.7% reported current/recent Lyme infection,
- -1.4% reported current/recent Cytomegalovirus (CMV) infection.

#### Table 6

Test results for latent disease.

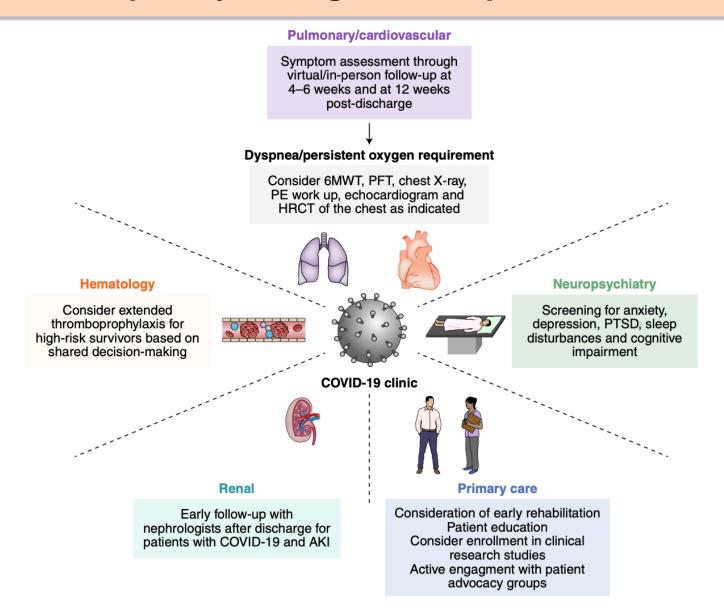
| Virus                              | Positive* | Positive (past) | Negative   | Total Tested |
|------------------------------------|-----------|-----------------|------------|--------------|
| Epstein-Barr (EBV)<br>Lyme Disease | 40<br>7   | 309<br>34       | 231<br>366 | 580<br>407   |
| Cytomegalovirus (CMV)              | 4         | 85              | 204        | 293          |

\* Includes both current and recent cases.

Davis HE, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021 Aug;38:101019.

### **TRIALS ONGOING**

H U.S. National Library of Medicine


ClinicalTrials.gov

Lessening Organ Dysfunction With VITamin C - COVID-19 (LOVIT-COVID); ClinicalTrials.gov Identifier: NCT04401150, Université de Sherbrooke (Toronto). Intravenous vitamin C administered in bolus doses of 50 mg/kg mixed in a 50-ml solution of either normal saline (0.9% NaCl) or dextrose 5% in water (D5W) during 30 to 60 minutes, every 6 hours for 96 hours (i.e. 200 mg/kg/day and 16 doses in total).

The Effects of a Multi-factorial Rehabilitation Program for Healthcare Workers Suffering From Post-COVID-19 Fatigue Syndrome; ClinicalTrials.gov Identifier: NCT04841759, Medical University of Vienna. SARS-CoV2 survivor who attends the exercise program and suffers from post-COVID-19 fatigue Syndrome according to the Post-Covid-19-Functional Scale (PCFS). 8 week exercise program, nutritional & psychological consultation

**Study to Evaluate the Efficacy and Safety of Leronlimab for Mild to Moderate COVID-19;** ClinicalTrials.gov Identifier: NCT04343651, University of California, Los Angeles. two-arm, randomized, double blind, placebo controlled multicenter study to evaluate the safety and efficacy of leronlimab (PRO 140) in patients with mild-to-moderate symptoms of respiratory illness caused by coronavirus 2019 infection. Patients will be randomized to receive weekly doses of 700 mg leronlimab (PRO 140), or placebo. Leronlimab (PRO 140) and placebo will be administered via subcutaneous injection.

### Interdisciplinary management in post COVID-19 clinics



Nalbandian, A., et al. Post-acute COVID-19 syndrome. Nat Med 27, 601–615 (2021)

## **RESEARCH QUESTIONS**

- What is the precise epidemiology of long covid and how will novel variants of Covid-19 affect the epidemiology and severity of long Covid?
- What are the major risk factors for long Covid and how do we best reduce an individual's risk of developing long term post-Covid-19 symptoms?
- Which symptoms, or set of symptoms, can we use to classify long Covid, clinically and phenotypically, with the aim of improving diagnosis and management?
- What is the optimal treatment and management strategy for long covid and is this strategy non-specific or will it require targeting and tailoring to specific patients?
- Which presentation of long Covid in children, pregnant woman and older people?
- Which therapies possible for long Covid?
- Different virus variants differents long Covid ?
- Role of Vaccines in long covid ?
- Which models of care for taking in charge these patients?

| nature<br>communications                                                                                                                                                                                                                                                                                                              |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ARTICLE<br>https://doi.org/10.1038/s41467-021-21220-5 OPEN                                                                                                                                                                                                                                                                            | Check for updates |
| Methodological quality of COVID-19 clinical research                                                                                                                                                                                                                                                                                  |                   |
| Richard G. Jung (1,2,3,13, Pietro Di Santo <sup>1,2,4,5,13</sup> , Cole Clifford <sup>6</sup> , Graeme Prosperi-Porta <sup>7</sup> , St<br>Annie Hung <sup>8</sup> , Simon Parlow <sup>4</sup> , Sarah Visintini (9 <sup>9</sup> , F. Daniel Ramirez (9 <sup>1,4,10,11</sup> , Trevor Simar<br>Benjamin Hibbert (9 <sup>2,3,4</sup> ) |                   |

### What is going on in Italy

Il **decreto-legge Sostegni bis** approvato dal Consiglio dei Ministri in data 21 maggio 2021 istituisce un **protocollo nazionale di monitoraggio** che prevede, senza oneri a carico dell'assistito, l'esecuzione di prestazioni di **specialistica ambulatoriale**, contenute nei Livelli Essenziali di Assistenza, ritenute per il monitoraggio, la prevenzione e la diagnosi precoce di eventuali esiti o complicanze legati alla pregressa malattia da COVID-19.

Le prestazioni previste nel decreto comprendono:

- una valutazione di parametri ematochimici,
- l'emogasanalisi,
- esami che valutano la funzione cardiologica (ECG Holter, Ecocardiogramma)
- esami che valutano la funzione pneumologica (Spirometria, diffusione alveolo capillare del CO, TC del torace)
- valutazioni specialistiche.
- Per pazienti più anziani, in considerazione delle condizioni di fragilità, è stata prevista **la valutazione multidisciplinare.**
- Per i pazienti sottoposti a terapia intensiva/subintensiva è stato previsto il **colloquio psicologico**

Il protocollo si riferisce specificamente ai pazienti che hanno avuto la **necessità di un ricovero ospedaliero per un quadro severo di COVID-19** (polmonite interstiziale da SARS-CoV-2, con relativa insufficienza respiratoria con o senza necessità di terapia intensiva/subintensiva), *in quanto questi soggetti, spesso anziani e polipatologici, presentano un maggior rischio di eventuali sequele e complicanze legate alla pregressa malattia da COVID-19*.



What is going on in Italy

Il decreto-legge Sostegni bis indica anche l'importanza di definire studi mirati di raccolta dati per il Long COVID-19, in considerazione del fatto che l'esigenza di comprensione, analisi e studio degli esiti della malattia COVID-19 sono particolarmente rilevanti per gli effetti in termini di coordinamento risposte del Servizio Sanitario Nazionale.

Tali studi devono prevedere una raccolta dati basata su parametri clinici, laboratoristici e strumentali uniformi e omogenei sul territorio nazionale.







# **Grazie per l'attenzione!**

francesco.digennaro1@uniba.it